Patents by Inventor Shubhashish Datta

Shubhashish Datta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11500615
    Abstract: A pseudo-random sequence generator for use within a universal lidar system and its corresponding method of operation. The pseudo-random sequence generator uses synchronized shift registers that are in series Binary adders are provided. The signal output of each of the shift registers is tapped and directed to the binary adders. High-speed switches are provided between the shift registers and the binary adders. The switches are programmed to connect only two of the shift registers to the binary adders for each of the pseudo-random patterns being generated. The binary adders generate an output signal that is received by the first shift register. The signal propagates through all the shift registers to the last shift register. The last shift register outputs a pseudo-random sequence.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 15, 2022
    Assignee: Discovery Semiconductors, Inc.
    Inventors: Shubhashish Datta, Abhay M. Joshi
  • Patent number: 10996334
    Abstract: A lidar system where a laser creates a laser output and the sequence generator creates a pseudorandom noise sequence. The laser output is directed into two paths. On the first path, the laser output is directed to a first modulator. The first modulator encodes the laser output with the pseudorandom noise sequence to produce an encoded output signal. The encoded output signal is amplified and directed toward a target, wherein a back-scattered signal is reflected back from the target. On the second path, the laser output is directed to a second modulator. The second modulator modulates the laser output to produce an oscillator signal. The back-scattered signal is aligned and is mixed with the oscillator signal from the second modulator. The resulting mixed signal is converted into a corresponding RF output signal. The RF output signal is cross-correlated with the pseudorandom noise sequence to acquire target data.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 4, 2021
    Assignee: Discovery Semiconductors, Inc.
    Inventors: Shubhashish Datta, Abhay Joshi
  • Publication number: 20200356346
    Abstract: A pseudo-random sequence generator for use within a universal lidar system and its corresponding method of operation. The pseudo-random sequence generator uses synchronized shift registers that are in series Binary adders are provided. The signal output of each of the shift registers is tapped and directed to the binary adders. High-speed switches are provided between the shift registers and the binary adders. The switches are programmed to connect only two of the shift registers to the binary adders for each of the pseudo-random patterns being generated. The binary adders generate an output signal that is received by the first shift register. The signal propagates through all the shift registers to the last shift register. The last shift register outputs a pseudo-random sequence.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 12, 2020
    Inventors: Shubhashish Datta, Abhay M. Joshi
  • Publication number: 20190265359
    Abstract: A lidar system where a laser creates a laser output and the sequence generator creates a pseudorandom noise sequence. The laser output is directed into two paths. On the first path, the laser output is directed to a first modulator. The first modulator encodes the laser output with the pseudorandom noise sequence to produce an encoded output signal. The encoded output signal is amplified and directed toward a target, wherein a back-scattered signal is reflected back from the target. On the second path, the laser output is directed to a second modulator. The second modulator modulates the laser output to produce an oscillator signal. The back-scattered signal is aligned and is mixed with the oscillator signal from the second modulator. The resulting mixed signal is converted into a corresponding RF output signal. The RF output signal is cross-correlated with the pseudorandom noise sequence to acquire target data.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 29, 2019
    Inventors: Shubhashish Datta, Abhay Joshi
  • Patent number: 8598673
    Abstract: A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Discovery Semiconductors, Inc.
    Inventors: Abhay M. Joshi, Shubhashish Datta
  • Publication number: 20120043584
    Abstract: A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Inventors: Abhay M. Joshi, Shubhashish Datta
  • Publication number: 20060013273
    Abstract: A monolithic wavelength stabilized system comprises a laser monolithically formed with a waveguide splitter having at least two branches. Non-identical resonators having different wavelengths are operatively coupled to each branch of the splitter and a photodiode is communicatively coupled to receive the output from each non-identical resonator. A control unit receives the photocurrent outputs from the photodiodes, determines based on the photocurrents whether the wavelength of the laser signal is at a desired value, and transmits a feedback signal to the laser to move the laser output toward the desired wavelength. The laser, splitter, resonators, and photodiodes are monolithically formed in a single chip using asymmetric waveguides.
    Type: Application
    Filed: April 14, 2005
    Publication date: January 19, 2006
    Applicant: The Trustees of Princeton University
    Inventors: Vinod Menon, Shubhashish Datta, Stephen Forrest