Patents by Inventor Shuen-Shin Liang

Shuen-Shin Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12261082
    Abstract: The present disclosure describes a semiconductor device with a nitrided capping layer and methods for forming the same. One method includes forming a first conductive structure in a first dielectric layer on a substrate, depositing a second dielectric layer on the first conductive structure and the first dielectric layer, and forming an opening in the second dielectric layer to expose the first conductive structure and a portion of the first dielectric layer. The method further includes forming a nitrided layer on a top portion of the first conductive structure, a top portion of the portion of the first dielectric layer, sidewalls of the opening, and a top portion of the second dielectric layer, and forming a second conductive structure in the opening, where the second conductive structure is in contact with the nitrided layer.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: March 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chin Chang, Lin-Yu Huang, Shuen-Shin Liang, Sheng-Tsung Wang, Cheng-Chi Chuang, Chia-Hung Chu, Tzu Pei Chen, Yuting Cheng, Sung-Li Wang
  • Publication number: 20250063758
    Abstract: A titanium precursor is used to selectively form a titanium silicide (TiSix) layer in a semiconductor device. A plasma-based deposition operation is performed in which the titanium precursor is provided into an opening, and a reactant gas and a plasma are used to cause silicon to diffuse to a top surface of a transistor structure. The diffusion of silicon results in the formation of a silicon-rich surface of the transistor structure, which increases the selectivity of the titanium silicide formation relative to other materials of the semiconductor device. The titanium precursor reacts with the silicon-rich surface to form the titanium silicide layer. The selective titanium silicide layer formation results in the formation of a titanium silicon nitride (TiSixNy) on the sidewalls in the opening, which enables a conductive structure such as a metal source/drain contact to be formed in the opening without the addition of another barrier layer.
    Type: Application
    Filed: November 5, 2024
    Publication date: February 20, 2025
    Inventors: Cheng-Wei CHANG, Chia-Hung CHU, Hsu-Kai CHANG, Sung-Li WANG, Kuan-Kan HU, Shuen-Shin LIANG, Kao-Feng LIN, Hung Pin LU, Yi-Ying LIU, Chuan-Hui SHEN
  • Patent number: 12170331
    Abstract: A titanium precursor is used to selectively form a titanium silicide (TiSix) layer in a semiconductor device. A plasma-based deposition operation is performed in which the titanium precursor is provided into an opening, and a reactant gas and a plasma are used to cause silicon to diffuse to a top surface of a transistor structure. The diffusion of silicon results in the formation of a silicon-rich surface of the transistor structure, which increases the selectivity of the titanium silicide formation relative to other materials of the semiconductor device. The titanium precursor reacts with the silicon-rich surface to form the titanium silicide layer. The selective titanium silicide layer formation results in the formation of a titanium silicon nitride (TiSixNy) on the sidewalls in the opening, which enables a conductive structure such as a metal source/drain contact to be formed in the opening without the addition of another barrier layer.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: December 17, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Chang, Chia-Hung Chu, Hsu-Kai Chang, Sung-Li Wang, Kuan-Kan Hu, Shuen-Shin Liang, Kao-Feng Lin, Hung Pin Lu, Yi-Ying Liu, Chuan-Hui Shen
  • Publication number: 20240405023
    Abstract: A semiconductor device includes a semiconductor fin protruding from a substrate. The semiconductor device includes a P-type device over the semiconductor fin and an N-type device over the semiconductor fin. The P-type device includes a first source/drain (S/D) feature adjacent a first gate structure. The P-type device includes a dipole layer over the first S/D feature, where the dipole layer includes a first metal and a second metal different from the first metal. The P-type device further includes a first silicide layer over the dipole layer, where the first silicide layer includes the first metal. The N-type device includes a second S/D feature adjacent a second gate structure. The N-type device further includes a second silicide layer directly contacting the second S/D feature, where the second silicide layer includes the first metal, and where a composition of the second silicide layer is different from that of the dipole layer.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 5, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuen-Shin LIANG, Hong-Mao Lee, Sung-Li Wang, Yan-Ming Tsai, Po-Chin Chang, Wei-Yip Loh, Harry CHIEN, Pei-Hua Lee
  • Patent number: 12148807
    Abstract: The present disclosure describes a method to form a semiconductor device with backside contact structures. The method includes forming a semiconductor device on a first side of a substrate. The semiconductor device includes a source/drain (S/D) region. The method further includes etching a portion of the S/D region on a second side of the substrate to form an opening and forming an epitaxial contact structure on the S/D region in the opening. The second side is opposite to the first side. The epitaxial contact structure includes a first portion in contact with the S/D region in the opening and a second portion on the first portion. A width of the second portion is larger than the first portion.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: November 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hung Chu, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang, Tsungyu Hung, Hsu-Kai Chang
  • Publication number: 20240379797
    Abstract: In an embodiment, a device includes: a first insulating fin; a second insulating fin; a nanostructure between the first insulating fin and the second insulating fin; and a gate structure wrapping around the nanostructure, a top surface of the gate structure disposed above a top surface of the first insulating fin, the top surface of the gate structure disposed below a top surface of the second insulating fin.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Cheng-Wei Chang, Shahaji B. More, Yi-Ying Liu, Shuen-Shin Liang, Sung-Li Wang
  • Publication number: 20240379425
    Abstract: A method includes forming a device region over a substrate; forming a first dielectric layer over the device region; forming an opening in the first dielectric layer; conformally depositing a first conductive material along sidewalls and bottom surfaces of the opening; depositing a second conductive material on the first conductive material to fill the opening, wherein the second conductive material is different from the first conductive material; and performing a first thermal process to form an interface region extending from a first region of the first conductive material to a second region of the second conductive material, wherein the interface region includes a homogeneous mixture of the first conductive material and the second conductive material.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Bo-Yu Lai, Chin-Szu Lee, Szu-Hua Wu, Shuen-Shin Liang, Chia-Hung Chu, Keng-Chu Lin, Sung-Li Wang
  • Publication number: 20240371952
    Abstract: The present disclosure describes a method to form a semiconductor device with backside contact structures. The method includes forming a semiconductor device on a first side of a substrate. The semiconductor device includes a source/drain (S/D) region. The method further includes etching a portion of the S/D region on a second side of the substrate to form an opening and forming an epitaxial contact structure on the S/D region in the opening. The second side is opposite to the first side. The epitaxial contact structure includes a first portion in contact with the S/D region in the opening and a second portion on the first portion. A width of the second portion is larger than the first portion.
    Type: Application
    Filed: July 11, 2024
    Publication date: November 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Hung CHU, Tsungyu Hung, Hsu-Kai Chang, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang
  • Publication number: 20240363704
    Abstract: A semiconductor device structure according to the present disclosure includes a source feature and a drain feature, at least one channel structure extending between the source feature and the drain feature, a gate structure wrapped around each of the at least one channel structure, a semiconductor layer over the gate structure, a dielectric layer over the semiconductor layer, a doped semiconductor feature extending through the semiconductor layer and the dielectric layer to be in contact with the source feature, a metal contact plug over the doped semiconductor feature, and a buried power rail disposed over the metal contact plug.
    Type: Application
    Filed: July 12, 2024
    Publication date: October 31, 2024
    Inventors: Chia-Hung Chu, Tsungyu Hung, Hsu-Kai Chang, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang
  • Publication number: 20240363722
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Application
    Filed: July 10, 2024
    Publication date: October 31, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Ting CHEN, Tsai-Jung Ho, Tsung-Han Ko, Tetsuji Ueno, Yahru Cheng, Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tsu-Hsiu Perng
  • Publication number: 20240355741
    Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.
    Type: Application
    Filed: July 1, 2024
    Publication date: October 24, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuen-Shin LIANG, Chun-I TSAI, Chih-Wei CHANG, Chun-Hsien HUANG, Hung-Yi HUANG, Keng-Chu LIN, Ken-Yu CHANG, Sung-Li WANG, Chia-Hung CHU, Hsu-Kai CHANG
  • Publication number: 20240355742
    Abstract: The present disclosure describes a method for the fabrication of ruthenium conductive structures over cobalt conductive structures. In some embodiments, the method includes forming a first opening in a dielectric layer to expose a first cobalt contact and filling the first opening with ruthenium metal to form a ruthenium contact on the first cobalt contact. The method also includes forming a second opening in the dielectric layer to expose a second cobalt contact and a gate structure and filling the second opening with tungsten to form a tungsten contact on the second cobalt contact and the gate structure. Further, the method includes forming a copper conductive structure on the ruthenium contact and the tungsten contact, where the copper from the copper conductive structure is in contact with the ruthenium metal from the ruthenium contact.
    Type: Application
    Filed: July 1, 2024
    Publication date: October 24, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Chang, Chien-Shun Liao, Sung-Li Wang, Shuen-Shin Liang, Shu-Lan Chang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang
  • Publication number: 20240347342
    Abstract: A method includes receiving a structure having a dielectric layer over a conductive feature, wherein the conductive feature includes a second metal. The method further includes etching a hole through the dielectric layer and exposing the conductive feature and depositing a first metal into the hole and in direct contact with the dielectric layer and the conductive feature, wherein the first metal entirely fills the hole. The method further includes annealing the structure such that atoms of the second metal are diffused into grain boundaries of the first metal and into interfaces between the first metal and the dielectric layer. After the annealing, the method further includes performing a chemical mechanical planarization (CMP) process to remove at least a portion of the first metal.
    Type: Application
    Filed: June 27, 2024
    Publication date: October 17, 2024
    Inventors: Sung-Li Wang, Hung-Yi Huang, Yu-Yun Peng, Mrunal A. Khaderbad, Chia-Hung Chu, Shuen-Shin Liang, Keng-Chu Lin
  • Publication number: 20240339497
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and methods of fabricating the same are disclosed. The semiconductor device includes first and second S/D regions, a nanostructured channel region disposed between the first and second S/D regions, a gate structure surrounding the nanostructured channel region, first and second contact structures disposed on first surfaces of the first and second S/D regions, a third contact structure disposed on a second surface of the first S/D region, and an etch stop layer disposed on a second surface of the second S/D region. The third contact structure includes a metal silicide layer, a silicide nitride layer disposed on the metal silicide layer, and a conductive layer disposed on the silicide nitride layer.
    Type: Application
    Filed: June 18, 2024
    Publication date: October 10, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Chang, Shuen-Shin Liang, Sung-Li Wang, Hsu-Kai Chang, Chia-Hung Chu, Chien-Shun Liao, Yi-Ying Liu
  • Patent number: 12112974
    Abstract: Examples of a technique for forming a dielectric material for an integrated circuit are provided herein. In an example, an integrated circuit workpiece is received that includes a recess. A first dielectric precursor is deposited in the recess. The first dielectric precursor includes a non-semiconductor component. A second dielectric precursor is deposited in the recess on the first dielectric precursor, and an annealing process is performed such that a portion of the non-semiconductor component of the first dielectric precursor diffuses into the second dielectric precursor. The non-semiconductor component may include oxygen, and the annealing process may be performed in one of a vacuum or an inert gas environment.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: October 8, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Tang Peng, Shuen-Shin Liang, Keng-Chu Lin, Teng-Chun Tsai
  • Publication number: 20240332393
    Abstract: A semiconductor device with different configurations of contact structures and a method of fabricating the same are disclosed. The semiconductor device includes first and second gate structures disposed on first and second fin structures, first and second source/drain (S/D) regions disposed on the first and second fin structures, first and second contact structures disposed on the first and second S/D regions, and a dipole layer disposed at an interface between the first nWFM silicide layer and the first S/D region. The first contact structure includes a first nWFM silicide layer disposed on the first S/D region and a first contact plug disposed on the first nWFM silicide layer. The second contact structure includes a pWFM silicide layer disposed on the second S/D region, a second nWFM silicide layer disposed on the pWFM silicide layer, and a second contact plug disposed on the pWFM silicide layer.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, LTD.
    Inventors: Hsu-Kai CHANG, Jhih-Rong HUANG, Yen-Tien TUNG, Chia-Hung CHU, Shuen-Shin LIANG, Tzer-Min SHEN, Pinyen LIN, Sung-Li WANG
  • Publication number: 20240313075
    Abstract: The present disclosure provides a method for semiconductor fabrication. The method includes depositing a first metal layer by a first deposition over a source/drain (S/D) feature and over side portions of a trench exposing the S/D feature. The first metal layer is thicker over the S/D feature than over side portions of the trench. The method includes growing a metal on the first metal layer by a second deposition to form a second metal layer filling up the trench. The second deposition is different from the first deposition and the growing of the metal in a vertical direction is grown at a faster rate than the growing of the metal in a horizontal direction. After growing the metal to form the second metal layer, the method includes planarizing the first and second metal layers to form an S/D contact. The method forms an S/D via on the second metal layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 19, 2024
    Inventors: Shuen-Shin LIANG, Kan-Ju LIN, Chia-Hung CHU, Chien CHANG, Harry CHIEN, Sung-Li WANG
  • Patent number: 12094952
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: September 17, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Ting Chen, Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tsu-Hsiu Perng, Tsai-Jung Ho, Tsung-Han Ko, Tetsuji Ueno, Yahru Cheng
  • Patent number: 12080766
    Abstract: A semiconductor device structure according to the present disclosure includes a source feature and a drain feature, at least one channel structure extending between the source feature and the drain feature, a gate structure wrapped around each of the at least one channel structure, a semiconductor layer over the gate structure, a dielectric layer over the semiconductor layer, a doped semiconductor feature extending through the semiconductor layer and the dielectric layer to be in contact with the source feature, a metal contact plug over the doped semiconductor feature, and a buried power rail disposed over the metal contact plug.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: September 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chia-Hung Chu, Tsungyu Hung, Hsu-Kai Chang, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang
  • Patent number: 12068252
    Abstract: The present disclosure describes a method for the fabrication of ruthenium conductive structures over cobalt conductive structures. In some embodiments, the method includes forming a first opening in a dielectric layer to expose a first cobalt contact and filling the first opening with ruthenium metal to form a ruthenium contact on the first cobalt contact. The method also includes forming a second opening in the dielectric layer to expose a second cobalt contact and a gate structure and filling the second opening with tungsten to form a tungsten contact on the second cobalt contact and the gate structure. Further, the method includes forming a copper conductive structure on the ruthenium contact and the tungsten contact, where the copper from the copper conductive structure is in contact with the ruthenium metal from the ruthenium contact.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: August 20, 2024
    Inventors: Cheng-Wei Chang, Chien-Shun Liao, Sung-Li Wang, Shuen-Shin Liang, Shu-Lan Chang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang