Patents by Inventor Shuhei Nitta

Shuhei Nitta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10338175
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes processing circuitry. The processing circuitry generates a plurality of cross-sectional images for setting a sectional position to be collected in main imaging based on a characteristic portion of a target detected in three-dimensional data. The processing circuitry lists the cross-sectional images on a display and superimposes a mark corresponding to the characteristic portion on at least one of the cross-sectional images. The processing circuitry receives a setting operation to determine the sectional position. The processing circuitry causes, when the mark is selected in the setting operation, a cross-sectional image to be emphasized a sectional position of which is defined using the characteristic portion corresponding to the mark among the listed cross-sectional images. The processing circuitry performs main imaging based on the sectional position after the setting operation.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 2, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Shuhei Nitta, Tomoyuki Takeguchi, Yurika Ogawa, Kensuke Shinoda, Takuya Fujimaki, Syuhei Takemoto, Shigehide Kuhara
  • Patent number: 10338177
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a sequence control unit, an image generating unit, and a deriving unit. The sequence control unit executes first imaging scan for acquiring data of a range including a target internal organ and second imaging scan for acquiring data for a diagnostic image by controlling execution of a pulse sequence. The image generating unit generates an image by using data acquired by the first imaging scan. The deriving unit derives an imaging scan area in which data for the diagnostic image are acquired in the second imaging scan and a related area set associated with the imaging scan area in the second imaging scan, based on image processing using the image.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: July 2, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shigehide Kuhara, Shuhei Nitta, Taichiro Shiodera, Tomoyuki Takeguchi
  • Publication number: 20190187232
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a processor and a memory. The memory stores processor-executable instructions that cause the processor to detect cross-sectional positions of a plurality of cross-sectional images to be acquired in an imaging scan from volume data; acquire the cross-sectional images in sequence based on the cross-sectional positions by executing the imaging scan; and after the first cross-sectional image is acquired in the imaging scan, generate a display image, and display the display image on a display, the display image being an image in which a cross-sectional position of a second cross-sectional image which is detected from the volume data is superimposed on the first cross-sectional image, the second cross-sectional image being a cross-sectional image before being acquired and intersecting with the first cross-sectional image.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 20, 2019
    Inventors: Shuhei NITTA, Shigehide KUHARA, Tomoyuki TAKEGUCHI, Taichiro SHIODERA, Yukinobu SAKATA
  • Patent number: 10215824
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a processor and a memory. The memory stores processor-executable instructions that cause the processor to detect cross-sectional positions of a plurality of cross-sectional images to be acquired in an imaging scan from volume data; acquire the cross-sectional images in sequence based on the cross-sectional positions by executing the imaging scan; and after the first cross-sectional image is acquired in the imaging scan, generate a display image, and display the display image on a display, the display image being an image in which a cross-sectional position of a second cross-sectional image which is detected from the volume data is superimposed on the first cross-sectional image, the second cross-sectional image being a cross-sectional image before being acquired and intersecting with the first cross-sectional image.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: February 26, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shuhei Nitta, Shigehide Kuhara, Tomoyuki Takeguchi, Taichiro Shiodera, Yukinobu Sakata
  • Patent number: 10203385
    Abstract: A magnetic resonance apparatus of the present embodiment includes: a gantry which includes a static field magnet, a gradient coil and an RF coil to image an object; processing circuitry; a memory that stores processor-executable instructions that, when executed by the processing circuitry, cause the processing circuitry to detect at least one position of an aortic valve and a pulmonary valve from three-dimensional image data including a heart of the object, as at least one characteristic region inside the heart, specify a position of an imaging cross-section substantially orthogonal to a bloodstream path inside the heart based on the position of the aortic valve or the pulmonary valve, and cause the gantry to image the imaging cross-section of the object at the specified position of the imaging cross-section.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 12, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shigehide Kuhara, Shuhei Nitta, Taichiro Shiodera, Yukinobu Sakata, Tomoyuki Takeguchi
  • Patent number: 10203390
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a sequence control unit, an image generating unit, and a deriving unit. The sequence control unit executes first imaging scan for acquiring data of a range including a target internal organ and second imaging scan for acquiring data for a diagnostic image by controlling execution of a pulse sequence. The image generating unit generates an image by using data acquired by the first imaging scan. The deriving unit derives an imaging scan area in which data for the diagnostic image are acquired in the second imaging scan and a related area set associated with the imaging scan area in the second imaging scan, based on image processing using the image.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: February 12, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shigehide Kuhara, Shuhei Nitta, Taichiro Shiodera, Tomoyuki Takeguchi
  • Patent number: 10102651
    Abstract: According to an embodiment, a device includes first and second generators, a detector, and a corrector. The first generator is configured to generate a first image based on data corresponding to photons with a first energy from among data that is obtained based on an energy of radiation that has passed through a subject. The second generator is configured to generate a second image based on data corresponding to photons with a second energy. The detector is configured to detect, in the second image, a second block having a similar pattern of pixel values to a first block included in the second image. The corrector is configured to correct pixel values of a third block in the first image corresponding to the first block based on new pixel values of the third block that are calculated by using pixel values included in a fourth block in the first image.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: October 16, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Takashi Ida, Toshiyuki Ono, Shuhei Nitta, Taichiro Shiodera, Hidenori Takeshima, Tomoyuki Takeguchi, Hiroaki Nakai
  • Patent number: 10074197
    Abstract: An X-ray computed-tomography (CT) apparatus of an embodiment includes an X-ray tube, an X-ray detector, and processing circuitry. The X-ray tube is configured to generate an X-ray. The X-ray detector includes a plurality of X-ray detection elements configured to output a signal based on the X-ray entered therein. The processing circuitry is configured to derive a constraint condition by using at least one piece of projection data out of a plurality of pieces of projection data corresponding energy bins of which differ at least partially, calculate an effective length that is a total length for which the X-ray has passed through a region in which a material to be decomposed is present, and generate image data showing information about the material by using the projection data and the effective length.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: September 11, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Shuhei Nitta, Taichiro Shiodera, Tomoyuki Takeguchi, Hidenori Takeshima, Toshiyuki Ono, Takashi Ida, Hiroaki Nakai
  • Patent number: 10043293
    Abstract: An image processing device to reduce noise in a medical image includes first and second generators, a detector, and a corrector. A first image is generated based on data corresponding to photons with a first energy from among data that is obtained based on an energy of radiation that has passed through a subject and a second image is generated based on data corresponding to photons with a second energy. The detector finds, in the second image, a second block having a similar pattern of pixel values to a first block included in the second image. The corrector reduces noise by correcting pixel values of a third block in the first image corresponding to the first block based on new pixel values of the third block that are calculated by using pixel values included in a fourth block in the first image.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 7, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Takashi Ida, Toshiyuki Ono, Shuhei Nitta, Taichiro Shiodera, Hidenori Takeshima, Tomoyuki Takeguchi, Hiroaki Nakai
  • Publication number: 20180211418
    Abstract: According to an embodiment, a device includes first and second generators, a detector, and a corrector. The first generator is configured to generate a first image based on data corresponding to photons with a first energy from among data that is obtained based on an energy of radiation that has passed through a subject. The second generator is configured to generate a second image based on data corresponding to photons with a second energy. The detector is configured to detect, in the second image, a second block having a similar pattern of pixel values to a first block included in the second image. The corrector is configured to correct pixel values of a third block in the first image corresponding to the first block based on new pixel values of the third block that are calculated by using pixel values included in a fourth block in the first image.
    Type: Application
    Filed: March 26, 2018
    Publication date: July 26, 2018
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Takashi IDA, Toshiyuki Ono, Shuhei Nitta, Taichiro Shiodera, Hidenori Takeshima, Tomoyuki Takeguchi, Hiroaki Nakai
  • Patent number: 9974464
    Abstract: An image processing apparatus according to an embodiment includes a processor and a memory. The memory stores processor-executable instructions that, when executed by the processor, cause the processor to: receive an input of information designating an observation target; extract, from each of magnetic resonance (MR) images included in an MR image group collected by applying a tagging pulse to a region where a fluid flows, a group of regions of the fluid; analyze, by an analyzing method associated with the observation target, the group of regions of the fluid extracted from each of the MR images, thereby deriving an index indicating a dynamic state of the fluid; and cause the index to be displayed on a display.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: May 22, 2018
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Taichiro Shiodera, Shuhei Nitta, Tomoyuki Takeguchi
  • Patent number: 9913622
    Abstract: According to an embodiment, an X-ray computed tomography (CT) apparatus includes processing circuitry. The processing circuitry is configured to acquire projection data that is based on a spectrum representing an amount of X-rays with respect to energy of a radiation having passed through a subject; select a plurality of materials; generate, from the projection data, first density images for each of the selected materials; generate a monochromatic image of specific energy from the first density images; reconstruct the projection data corresponding to the specific energy to generate a reconstructed image; compare the monochromatic image and the reconstructed image; and provide a notification indicating a result of the comparison.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: March 13, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Takashi Ida, Toshiyuki Ono, Shuhei Nitta, Hiroaki Nakai
  • Patent number: 9911392
    Abstract: A medical image diagnosis apparatus according to an embodiment includes a controller. The controller generates a plurality of candidates for a first cross-sectional image from three-dimensional image data obtained by taking images of a heart. The controller generates, from the three-dimensional image data, one or more second cross-sectional images each of which intersects the candidates for the first cross-sectional image. The controller displays in parallel on a display, the candidates for the first cross-sectional image, as well as the second cross-sectional images on each of which information is superimposed. The information indicates positional relationships between the candidates for the first cross-sectional image and the second cross-sectional image.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: March 6, 2018
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shuhei Nitta, Tomoyuki Takeguchi, Nobuyuki Matsumoto, Masahiro Sekine
  • Publication number: 20180024217
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes sequence control circuitry and processing circuitry. The sequence control circuitry conducts, on a subject, first imaging and second imaging that is subsequent to the first imaging. The processing circuitry estimates, based on a magnetic resonance image related to the first imaging and an imaging condition set with regard to the second imaging, information about an image quality in a case in which the second imaging is conducted. The processing circuitry presents, on a display, an estimation result, superimposing the estimation result on the magnetic resonance image. The processing circuitry receives a designation operation on the magnetic resonance image from an operator, and changes a setting of the imaging condition related to the second imaging based on the designation operation.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 25, 2018
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Shuhei NITTA, Kensuke SHINODA
  • Patent number: 9872661
    Abstract: According to an embodiment, an X-ray computed tomography apparatus includes processing circuitry. The processing circuitry is configured to acquire first projection data that is based on a first spectrum representing an amount of radioactive rays in a unit of energy of the radioactive rays having passed through a subject and detected by a detector. The processing circuitry is configured to generate second projection data by correcting the first projection data based on a response characteristic of the detector. The processing circuitry is configured to operate reconstruction process to the second projection data.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 23, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Toshiyuki Ono, Takashi Ida, Shuhei Nitta, Hiroaki Nakai
  • Publication number: 20180003788
    Abstract: A magnetic resonance imaging apparatus according to embodiments includes sequence control circuitry and processing circuitry. The sequence control circuitry performs first imaging and second imaging to a subject. The processing circuitry detects a state of a setting of the subject by using a magnetic resonance image acquired from the first imaging, and causes a display to display supporting information that supports the setting of the subject based on information detected. The sequence control circuitry performs the second imaging on the subject after the supporting information is displayed.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Kensuke Shinoda, Shuhei Nitta
  • Patent number: 9797972
    Abstract: An image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to generate, from three-dimensional medical image data, a first cross-sectional image and a second cross-sectional image intersecting the first cross-sectional image and is configured to change display locations of the first cross-sectional image and the second cross-sectional image on a display, in conjunction with a change in an intersecting location of the first and the second cross-sectional images.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: October 24, 2017
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shuhei Nitta, Tomoyuki Takeguchi, Nobuyuki Matsumoto, Masahiro Sekine
  • Patent number: 9746535
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes an acquiring unit, a detecting unit, a deriving unit, and an imaging controller. The acquiring unit acquires three-dimensional image data including a target organ. The detecting unit detects an upper end position and a lower end position of the target organ in the three-dimensional image data. The deriving unit derives an imaging range of subsequent imaging performed after acquisition of the three-dimensional image data based on the upper end position and the lower end position of the target organ. The imaging controller controls performance of the subsequent imaging in accordance with the imaging range.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 29, 2017
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shuhei Nitta, Tomoyuki Takeguchi, Nobuyuki Matsumoto, Shigehide Kuhara
  • Publication number: 20170202531
    Abstract: An X-ray computed tomography (CT) apparatus according to an embodiment includes an X-ray generator, an X-ray detector and processing circuitry. The X-ray generator irradiates X-rays to a subject. The X-ray detector detects the X-rays that have passed through the subject. The processing circuitry calculates an estimated spectrum based on an irradiation spectrum, an estimated length and information indicating a distortion of a spectrum occurring in a path of the X-rays passing through the subject, the estimated length representing an estimated value of an X-ray transmission length of a material of decomposition target. The processing circuitry determines an X-ray transmission length of the material of decomposition target based on the estimated spectrum and a detected spectrum that is a spectrum after the X-rays have passed through the subject and that is detected by the X-ray detector.
    Type: Application
    Filed: January 18, 2017
    Publication date: July 20, 2017
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Shuhei NITTA, Toshiyuki ONO, Takashi IDA, Hiroaki NAKAI
  • Patent number: 9693706
    Abstract: An image processing apparatus according to an embodiment includes a specifying unit and a deriving unit. The specifying unit specifies a fluid region in a plurality of magnetic resonance images that are acquired by applying a labeling pulse to a label region and that are mutually related. The deriving unit derives an index indicating dynamics of a fluid on the basis of the specified fluid region.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: July 4, 2017
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Taichiro Shiodera, Shuhei Nitta, Tomoyuki Takeguchi, Nobuyuki Matsumoto