Patents by Inventor Shuhei Oe

Shuhei Oe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140136086
    Abstract: A vehicle controller performs a throttle-valve-late-close control in which the throttle valve is held open until a delay time has passed after the fuel cut is started, and an EGR-valve-open-close control in which the EGR valve is repeatedly opened and closed. Then, the throttle valve is closed and the EGR valve is opened. In a period from a latter period of an exhaust stroke to a preceding period of an intake stroke, a valve-overlap control is executed so that a variable valve timing controller is controlled to make both an intake valve and an exhaust valve opened. A pumping loss of an engine is sufficiently reduced and an energy-regenerate efficiency can be effectively improved.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: DENSO CORPORATION
    Inventors: Taketsugu SASAKI, Shuhei OE, Masanori SUGIURA, Takashi SATOH, Motoyoshi HATTA
  • Publication number: 20140096731
    Abstract: A main lock member is fitted in a main lock bore at a main lock phase for closing an intake valve at a timing later than a timing when a piston reaches a bottom dead center, whereby a rotation phase is locked. In a subordinate lock mechanism, the rotation phase is locked at a subordinate lock phase advancing further than the main lock phase. In a lock control mechanism, a temperature sensing body is changed to an expanded state, whereby a moving member is latched at a first position in which the main lock member is allowed to be fitted in the main lock bore, whereas at a main lock phase in a cold stop state after a timing when the temperature of the stopped internal combustion engine becomes less than a preset temperature, the temperature sensing body is changed to a contracted state.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 10, 2014
    Applicant: DENSO CORPORATION
    Inventors: Yuusuke YASUKI, Shuhei OE, Makoto OTSUBO, Taketsugu SASAKI, Kuniaki OKA, Akira OKADA, Takehiro TANAKA
  • Patent number: 8627794
    Abstract: A fluid brake device has a case defining a fluid chamber. Magneto-rheological fluid is contained in the fluid chamber. A brake member is rotatably supported on the case and receives a braking torque according to the viscosity of the magneto-rheological fluid. The device has a movable member driven by a thermo-sensitive wax so that a volume of the fluid chamber is increased as the temperature in the fluid chamber is increased. The movable member is driven to maintain a pressure in the fluid chamber within an allowable range when the temperature in the fluid chamber is changed.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: January 14, 2014
    Assignee: Denso Corporation
    Inventors: Shuhei Oe, Kuniaki Oka, Makoto Otsubo, Jun Yamada, Kenichi Nara, Seiichiro Washino
  • Patent number: 8539919
    Abstract: A fluid brake device has a rotor having a brake shaft penetrating a case to come into contact with magnetic viscosity fluid. A sealing sleeve is arranged to surround the brake shaft, and a seal gap is defined between the sealing sleeve and the brake shaft and communicates with a fluid chamber. The sealing sleeve has a flux guide that guides magnetic flux to the brake shaft through the seal gap. The brake shaft has a magnetic shaft extending in an axis direction, and a regulation layer that regulates the magnetic flux from passing by covering an outer circumference surface of the magnetic shaft. The brake shaft has an exposing part opposing to the magnetic flux guide, and the exposing part of the brake shaft is exposed from the regulation layer.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: September 24, 2013
    Assignee: Denso Corporation
    Inventors: Kuniaki Oka, Jun Yamada, Makoto Otsubo, Shuhei Oe, Taketsugu Sasaki, Kenichi Nara
  • Publication number: 20130019827
    Abstract: A fluid brake device has a brake shaft which penetrates a case. The case provides a fluid chamber for a magneto-rheological fluid. A magnetic seal has a magnetic seal sleeve which holds a small amount of the magneto-rheological fluid by magnetic flux. In addition to the magnetic seal, an axially pumping element is provided on an axial outside of the magnetic seal. The axially pumping element is provided by a shaft helical groove formed on an opposing wall of the brake shaft and/or a case helical groove formed on a surrounding wall. As the brake shaft rotates, the helical groove pushes the magneto-rheological fluid back to the magnetic seal. A combination of the magnetic seal and the axially pumping element may reduce leakage of the magneto-rheological fluid.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: DENSO CORPORATION
    Inventors: Kuniaki Oka, Jun Yamada, Makoto Otsubo, Shuhei Oe, Taketsugu Sasaki, Seiichirou Washino
  • Publication number: 20120312260
    Abstract: A fluid brake device has a rotor having a brake shaft penetrating a case to come into contact with magnetic viscosity fluid. A sealing sleeve is arranged to surround the brake shaft, and a seal gap is defined between the sealing sleeve and the brake shaft and communicates with a fluid chamber. The sealing sleeve has a flux guide that guides magnetic flux to the brake shaft through the seal gap. The brake shaft has a magnetic shaft extending in an axis direction, and a regulation layer that regulates the magnetic flux from passing by covering an outer circumference surface of the magnetic shaft. The brake shaft has an exposing part opposing to the magnetic flux guide, and the exposing part of the brake shaft is exposed from the regulation layer.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 13, 2012
    Applicant: DENSO CORPORATION
    Inventors: Kuniaki Oka, Jun Yamada, Makoto Otsubo, Shuhei Oe, Taketsugu Sasaki, Kenichi Nara
  • Publication number: 20120291732
    Abstract: A fluid brake device has a case defining a fluid chamber. Magneto-rheological fluid is contained in the fluid chamber. A brake member is rotatably supported on the case and receives a braking torque according to the viscosity of the magneto-rheological fluid. The device has a movable member driven by a thermo-sensitive wax so that a volume of the fluid chamber is increased as the temperature in the fluid chamber is increased. The movable member is driven to maintain a pressure in the fluid chamber within an allowable range when the temperature in the fluid chamber is changed.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: DENSO CORPORATION
    Inventors: Shuhei OE, Kuniaki Oka, Makoto Otsubo, Jun Yamada, Kenichi Nara, Seiichiro Washino
  • Patent number: 8151627
    Abstract: An output signal of a knock sensor is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor, and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. A knock determination part computes the number of time-varying patterns of vibration intensity which rise at same time. The knock determination part executes a knock determination based on whether the number of the time-varying patterns of vibration intensity is greater than a knock determination threshold.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 10, 2012
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Satoshi Masuda, Hirohiko Yamada, Naoki Kokubo, Shuhei Oe
  • Publication number: 20120042841
    Abstract: A valve timing control apparatus includes a housing that is rotatable with a crankshaft; a vane rotor that is rotatable with a camshaft; and a phase controller to compulsorily change a rotation phase of the vane rotor alternately between an advance side and a retard side with respect to the housing if an engine shifts to a high rotation state after the engine continuously has a low rotation state for a predetermined period or more. The engine in the low rotation state has a rotation speed lower than a predetermined rotation speed. The engine in the high rotation state has a rotation speed equal to or higher than the predetermined rotation speed.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 23, 2012
    Applicants: NIPPON SOKEN, INC., TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Shuhei OE, Hiroya Andou, Jun Yamada, Takehiro Tanaka, Yoshihito Moriya
  • Patent number: 8096166
    Abstract: An output signal of a knock sensor is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. A knock determination part computes lengths (crank angle, or time period) from a starting point to a latest terminating point of the time-varying patterns of vibration intensity in at least two frequency ranges, which rise at a same time. The knock determination part executes a knock determination based on whether the lengths are greater than a knock determination threshold.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: January 17, 2012
    Assignees: DENSO Corporation, Nippon Soken, Inc.
    Inventors: Satoshi Masuda, Hirohiko Yamada, Naoki Kokubo, Shuhei Oe
  • Publication number: 20110303171
    Abstract: A valve timing controller has a case which defines a fluid chamber therein. A magnetic viscosity fluid is enclosed in the fluid chamber. The magnetic viscosity fluid including magnetic particles and its viscosity varies according to a magnetic field applied thereto. A coil and a control circuit applies magnetic field to the magnetic viscosity fluid to variably control a viscosity thereof. A brake rotor is rotatably accommodated in the fluid chamber and receives a brake torque from the magnetic viscosity fluid according to the viscosity thereof. A phase adjusting mechanism is connected to the brake rotor for adjusting a relative rotational phase between the crankshaft and the camshaft according to the brake torque. When it is estimated that the engine will be started, the coil is energized to generated heat in the magnetic viscosity fluid.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 15, 2011
    Applicants: DENSO CORPORATION, NIPPON SOKEN, INC.
    Inventors: Kuniaki OKA, Shuhei Oe, Masayoshi Sugino, Kenichi Nara
  • Patent number: 8056396
    Abstract: An output of a knock sensor is A/D converted in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from the knock sensor output signal and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. An edge direction and an edge intensity are computed by an edge extraction processing. A correlation value expressing a correlation between time-varying patterns of vibration intensities in multiple frequency ranges and a reference model expressing the feature of knock is computed in a mutual correlation/knock determination part. The correlation value is compared with a determination threshold. When the correlation value is larger than the determination threshold, it is determined that knock is caused. When the correlation value is not larger than the determination threshold, it is determined that knock is not caused.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 15, 2011
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Satoshi Masuda, Hirohiko Yamada, Shuhei Oe, Naoki Kokubo
  • Patent number: 8042381
    Abstract: A knocking judgement method for an internal combustion engine, in which an engine ECU executes a program judging whether or not such ones of integrated values calculated by integrating the output of a knock sensor at every five degrees of a crank angle are larger than a tentative knock judgement value, in vibrations of a fourth frequency band containing the resonance frequency of the engine, tentatively judging that a knocking has occurred, in case the integrated value larger than the tentative knock judgement value is a predetermined number or more, and judging that no knocking has occurred, in case the integrated value larger than the tentative knock judgement value is not more than the predetermined number.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: October 25, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Patent number: 8020429
    Abstract: An engine ECU executes a program including calculating a correlation coefficient by dividing the sum of respective absolute values, which are each a difference between a magnitude in an engine vibration waveform and a magnitude in a knock waveform model for every crank angle, by an area corresponding to magnitudes equal to or larger than a positive reference value in the knock waveform model, and determining whether or not knocking has occurred based on the correlation coefficient.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 20, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuuichi Takemura, Shuhei Oe
  • Patent number: 8005607
    Abstract: An engine ECU executes a program that includes: calculating a median value and a standard deviation based on a calculated value based on the detected vibration of the engine; and subtracting a product of the standard deviation and a coefficient from the median value to calculate a magnitude of mechanical vibration specific to the engine. Knocking determination is carried out by comparing a knock magnitude calculated by dividing the magnitude value of the peak magnitude of the detected vibration of the engine by the magnitude of mechanical vibration specific to the engine with a predetermined determination value. Based on the knocking determination result, ignition timing of the engine is controlled.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 23, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 8000884
    Abstract: A device and associated method for controlling ignition timing of an internal combustion engine are provided. By comparing a determination value and knock magnitude, determination of knocking is made, and ignition timing is advanced or retarded. The device includes an operation unit that sets a correction amount of the determination value to a value corresponding to a degree of change of the determination value over time. The operation unit calculates, at a first timing, a first value related to an average value of the determination values; and calculates, at a second timing later than the first timing, a second value related to the average value of the determination values. The degree of change of the determination value is calculated as a difference between the first value and the second value.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 16, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Koji Aso, Kenji Kasashima, Rihito Kaneko, Masatomo Yoshihara, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 7942040
    Abstract: Out of synthesized waveforms of vibrations in a first frequency band A to a third frequency band C, a knock magnitude N is calculated by using a portion ? having an integrated value greater than a reference magnitude in a knock region but not using a portion having an integrated value greater than the reference magnitude out of the knock region (i.e., a region obtained by excluding the knock region from a knock detecting gate). In a case where knock magnitude N is greater than a determination value V(KX), it is determined that knocking occurs. In contrast, in a case where knock magnitude N is not greater than determination value V(KX), it is determined that no knocking occurs.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: May 17, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Patent number: 7945379
    Abstract: An engine ECU executes a program including the steps of: calculating a coefficient of correlation K in accordance with a result of comparing a waveform of a vibration of a frequency band including a resonance frequency of an engine with a knock waveform model previously created as a waveform of a vibration caused when the engine knocks; calculating a knock intensity N from an intensity of a vibration of a frequency band excluding the resonance frequency of the engine; if knock intensity N is larger than a reference value and coefficient of correlation K is larger than a threshold value, determining that the engine knocks; and if knock intensity N is smaller than the reference value and/or coefficient of correlation K is smaller than the threshold value, determining that the engine does not knock.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: May 17, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yuuichi Takemura, Shuhei Oe
  • Patent number: 7874200
    Abstract: An engine ECU executes a program including the steps of: detecting a vibration corresponding to a first radial resonance mode by using a band-pass filter, from vibrations sensed by an in-cylinder pressure sensor provided at an upper central portion of the cylinder; calculating knock intensity N based on a result of comparison between the detected waveform and a knock waveform model prepared in advance as a vibration waveform when knocking occurs; determining that knocking occurred when the knock intensity N is larger than a predetermined reference value; and determining that knocking has not occurred when the knock intensity N is not larger than the predetermined reference value.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 25, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Shuhei Oe, Kiyoshi Iwade, Nobuyuki Murate, Rihito Kaneko, Yuichi Takemura, Shigeru Kamio
  • Patent number: 7822533
    Abstract: An engine ECU executes a program including a step of setting a search range of the crank angle of a peak value P that is the largest integrated value in a vibration waveform of an engine detected by calculating integrated values that are integrals of output voltage values of a knock sensor for every five degrees of a crank angle such that the search range may include the crank angle increasing with increase in engine speed NE, and a step of detecting the crank angle of the largest integrated value in the search range, and setting the detected crank angle as the crank angle of peak value P in the vibration waveform. At the crank angle based on the crank angle of peak value P, the vibration waveform is compared with a knock waveform model.
    Type: Grant
    Filed: May 28, 2007
    Date of Patent: October 26, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Kenji Senda, Yuuichi Takemura, Shuhei Oe