Patents by Inventor Shuichiro Asakawa

Shuichiro Asakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094474
    Abstract: An optical connector cleaning tool includes a cleaning portion pressed against a coupling end face of an optical connector, a container storing a cleaning liquid, and an atomizer spraying the cleaning liquid to the cleaning portion.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Shuichiro ASAKAWA, Kenta ARAI, Etsu HASHIMOTO
  • Patent number: 11880073
    Abstract: An optical connector cleaning tool includes a cleaning portion (101), a container (102) configured to store a cleaning liquid (121), and an atomizer (103) configured to atomize the cleaning liquid (121) stored in the container (102) by ultrasonic atomization. The atomizer (103) includes an atomizing separation portion (105) configured to cover a liquid supply port (104) and pass not a liquid but mist. In addition, the cleaning tool includes a control circuit (107) configured to control an operation time of the atomizer (103) by a set time.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: January 23, 2024
    Assignee: NTT ADVANCED TECHNOLOGY CORPORATION
    Inventors: Shuichiro Asakawa, Kenta Arai, Etsu Hashimoto
  • Patent number: 11561350
    Abstract: To reduce bad connections of a BGA optical module as an optical fiber interface during mounting by reflowing. An optical module includes: a substrate to which an optical fiber is connected and fixed and on which an electronic circuit, an optical circuit or the like is formed; a ball grid array provided on one face of the substrate as an electrical interface used when the optical module is mounted on a mounting substrate; a lid having a thermal conductivity provided on another face of the substrate; and a fiber routing mechanism provided in contact with the lid, the fiber routing mechanism having a thermal conductivity and shaped to enable the optical fiber to be wound around the fiber routing mechanism.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 24, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kiyofumi Kikuchi, Shunichi Soma, Ken Tsuzuki, Shuichiro Asakawa
  • Patent number: 11422321
    Abstract: Provided is an optical fiber connection component in which an optical waveguide of a planar lightwave circuit and an optical fiber can be connected after a process using SMT and reflow mounting technology. The optical fiber connection component includes: a plurality of fiber guide holes into which optical fibers are insertable at intervals equal to intervals of a plurality of optical waveguides of the planar lightwave circuit; and grooves for demarcating an area provided with the plurality of fiber guide holes and an area coated with an adhesive in an end surface to be joined with the planar lightwave circuit. The plurality of optical waveguides and the plurality of fiber guide holes are respectively aligned and fixed to the planar lightwave circuit with the adhesive in advance.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 23, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Ai Yanagihara, Shuichiro Asakawa, Kota Shikama, Yusuke Muranaka, Hidetaka Nishi
  • Patent number: 11307356
    Abstract: An optical module that has a structure ensuring reduction in size. The optical module has a structure where a part of a fiber block is protruded from a housing. By including a thin plate, this optical module can avoid entering of dust in the housing, allows a position shift of the fiber block due to a mounting position error of an optical component in the housing, a position shift of an opening portion due to a dimensional error of the housing, or a displacement due to a temperature change, and can reduce the coupling loss due to the optical axis misalignment.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 19, 2022
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuichi Suzuki, Tomohiro Nakanishi, Motoki Minami, Hiroshi Tomita, Motohaya Ishii, Shuichiro Asakawa, Shunichi Soma
  • Publication number: 20220026642
    Abstract: An optical connector cleaning tool includes a cleaning portion (101), a container (102) configured to store a cleaning liquid (121), and an atomizer (103) configured to atomize the cleaning liquid (121) stored in the container (102) by ultrasonic atomization. The atomizer (103) includes an atomizing separation portion (105) configured to cover a liquid supply port (104) and pass not a liquid but mist. In addition, the cleaning tool includes a control circuit (107) configured to control an operation time of the atomizer (103) by a set time.
    Type: Application
    Filed: November 21, 2019
    Publication date: January 27, 2022
    Inventors: Shuichiro ASAKAWA, Kenta ARAI, Etsu HASHIMOTO
  • Patent number: 11199659
    Abstract: An optical module according to the present invention includes: a first plasmonic waveguide having one end formed of a first metal layer formed over an end portion of a first substrate, and having another end connected to one end of a first optical waveguide; a second metal layer that is formed on a side surface continuous with the end portion of the first substrate and formed to be continuous with the first metal layer; a second substrate provided with a second plasmonic waveguide formed of a third metal layer; and a second optical waveguide that is connected to the second plasmonic waveguide and formed on the second substrate, wherein the second metal layer and a part of the third metal layer are joined together to connect the first substrate to the second substrate.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 14, 2021
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hidetaka Nishi, Shuichiro Asakawa, Kota Shikama, Yusuke Muranaka, Ai Yanagihara
  • Publication number: 20210364711
    Abstract: To reduce bad connections of a BGA optical module as an optical fiber interface during mounting by reflowing. An optical module includes: a substrate to which an optical fiber is connected and fixed and on which an electronic circuit, an optical circuit or the like is formed; a ball grid array provided on one face of the substrate as an electrical interface used when the optical module is mounted on a mounting substrate; a lid having a thermal conductivity provided on another face of the substrate; and a fiber routing mechanism provided in contact with the lid, the fiber routing mechanism having a thermal conductivity and shaped to enable the optical fiber to be wound around the fiber routing mechanism.
    Type: Application
    Filed: March 25, 2019
    Publication date: November 25, 2021
    Inventors: Kiyofumi Kikuchi, Shunichi Soma, Ken Tsuzuki, Shuichiro Asakawa
  • Publication number: 20210247575
    Abstract: Provided is an optical fiber connection component in which an optical waveguide of a planar lightwave circuit and an optical fiber can be connected after a process using SMT and reflow mounting technology. The optical fiber connection component includes: a plurality of fiber guide holes into which optical fibers are insertable at intervals equal to intervals of a plurality of optical waveguides of the planar lightwave circuit; and grooves for demarcating an area provided with the plurality of fiber guide holes and an area coated with an adhesive in an end surface to be joined with the planar lightwave circuit. The plurality of optical waveguides and the plurality of fiber guide holes are respectively aligned and fixed to the planar lightwave circuit with the adhesive in advance.
    Type: Application
    Filed: May 23, 2019
    Publication date: August 12, 2021
    Inventors: Ai Yanagihara, Shuichiro Asakawa, Kota Shikama, Yusuke Muranaka, Hidetaka Nishi
  • Publication number: 20210231871
    Abstract: An optical module according to the present invention includes: a first plasmonic waveguide having one end formed of a first metal layer formed over an end portion of a first substrate, and having another end connected to one end of a first optical waveguide; a second metal layer that is formed on a side surface continuous with the end portion of the first substrate and formed to be continuous with the first metal layer; a second substrate provided with a second plasmonic waveguide formed of a third metal layer; and a second optical waveguide that is connected to the second plasmonic waveguide and formed on the second substrate, wherein the second metal layer and a part of the third metal layer are joined together to connect the first substrate to the second substrate.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 29, 2021
    Inventors: Hidetaka Nishi, Shuichiro Asakawa, Kota Shikama, Yusuke Muranaka, Ai Yanagihara
  • Patent number: 10908356
    Abstract: An optical circuit board which is mounted with a loop-back circuit for returning aligning light to the fiber array in the vicinity of the fiber array connection end. Since an aligning loop-back circuit can be formed in an optical waveguide pattern, a production cost does not increase in comparison to an optical circuit board of the related art. The aligning light combined from the optical fiber to the aligning port of the optical circuit board is returned to the optical fiber around the loop-back circuit. Therefore, it is possible to perform alignment using the returned light. That is, alignment can be performed while being mounted on a package without installing a light-reflecting film or mirror.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: February 2, 2021
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomohiro Nakanishi, Motoki Minami, Satoru Konno, Yuichi Suzuki, Teruaki Sato, Shigeo Nagashima, Shinji Mino, Motohaya Ishii, Shunichi Soma, Shin Kamei, Shuichiro Asakawa
  • Publication number: 20210003781
    Abstract: An optical module that has a structure ensuring reduction in size. The optical module has a structure where a part of a fiber block is protruded from a housing. By including a thin plate, this optical module can avoid entering of dust in the housing, allows a position shift of the fiber block due to a mounting position error of an optical component in the housing, a position shift of an opening portion due to a dimensional error of the housing, or a displacement due to a temperature change, and can reduce the coupling loss due to the optical axis misalignment.
    Type: Application
    Filed: December 19, 2018
    Publication date: January 7, 2021
    Inventors: Yuichi SUZUKI, Tomohiro NAKANISHI, Motoki MINAMI, Hiroshi TOMITA, Motohaya ISHII, Shuichiro ASAKAWA, Shunichi SOMA
  • Patent number: 10649147
    Abstract: An optical module that is connectable to an optical fiber array and that can be packaged in a high density. Two package modules are mounted on a board, and optical waveguides in a Si photonic lightwave circuit mounted on the package module are connected to an optical fiber array fixed to an optical fiber block. Moreover, output end surfaces of the optical waveguides in the Si photonic lightwave circuit are perpendicular to a mount surface of the package module. The optical waveguides in the Si photonic lightwave circuit may be tilted at an appropriate angle with respect to a direction perpendicular to a right end surface. Moreover, the optical fiber block fixes optical fibers with the optical fibers tilted with respect to a direction perpendicular to an end surface connected to the Si photonic lightwave circuit.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: May 12, 2020
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomohiro Nakanishi, Teruaki Sato, Motohaya Ishii, Satoru Konno, Yuichi Suzuki, Shigeo Nagashima, Shinji Mino, Shuichiro Asakawa, Hiroshi Fukuda, Shin Kamei, Shunichi Soma, Ken Tsuzuki, Mitsuo Usui, Takashi Saida
  • Publication number: 20200057192
    Abstract: An optical circuit board which is mounted with a loop-back circuit for returning aligning light to the fiber array in the vicinity of the fiber array connection end. Since an aligning loop-back circuit can be formed in an optical waveguide pattern, a production cost does not increase in comparison to an optical circuit board of the related art. The aligning light combined from the optical fiber to the aligning port of the optical circuit board is returned to the optical fiber around the loop-back circuit. Therefore, it is possible to perform alignment using the returned light. That is, alignment can be performed while being mounted on a package without installing a light-reflecting film or mirror.
    Type: Application
    Filed: November 2, 2017
    Publication date: February 20, 2020
    Inventors: Tomohiro NAKANISHI, Motoki MINAMI, Satoru KONNO, Yuichi SUZUKI, Teruaki SATO, Shigeo NAGASHIMA, Shinji MINO, Motohaya ISHII, Shunichi SOMA, Shin KAMEl, Shuichiro ASAKAWA
  • Publication number: 20190353844
    Abstract: An optical module which is connectable to an optical fiber array and which can be packaged in a high density. Two 30 mm square package modules are mounted on a board, and optical waveguides in a 20 mm square Si photonic lightwave circuit mounted on the package module are connected to an optical fiber array fixed to an optical fiber block (15×10 mm). Moreover, output end surfaces of the optical waveguides in the Si photonic lightwave circuit are perpendicular to a mount surface of the package module. In the embodiment, the optical waveguides in the Si photonic lightwave circuit are tilted at an appropriate angle, for example, 20 degrees with respect to a direction perpendicular to a right end surface. Moreover, the optical fiber block fixes optical fibers with the optical fibers tilted at 20 degrees with respect to a direction perpendicular to an end surface connected to the Si photonic lightwave circuit.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 21, 2019
    Inventors: Tomohiro Nakanishi, Teruaki Sato, Motohaya Ishii, Satoru Konno, Yuichi Suzuki, Shigeo Nagashima, Shinji Mino, Shuichiro Asakawa, Hiroshi Fukuda, Shin Kamei, Shunichi Soma, Ken Tsuzuki, Mitsuo Usui, Takashi Saida
  • Patent number: 10165690
    Abstract: In a conventional soldering method, an FPC-side electrode pad and a package-side electrode pad are closely joined together with a solder layer, and the soldered state after a joining process has not been easily confirmed visually. The present invention provides a solder joint structure including a side face electrode which is formed on each of the side faces of the end parts of an FPC board and a package or PCB board that are to be soldered, extending vertically relative to the faces constituting each of electrode pads on the boards, and which introduces solder. On the side face electrodes of the board end parts, a part of solder that is formed continuously from the solder joint portion is visible and the state of the solder joint between the electrode pads on the two boards can be confirmed. The efficiency of solder joint tests can be improved.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: December 25, 2018
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Mitsuo Usui, Kiyofumi Kikuchi, Ken Tsuzuki, Hiroshi Fukuda, Shuichiro Asakawa, Shin Kamei, Shunichi Soma, Takashi Saida
  • Publication number: 20180199445
    Abstract: In a conventional soldering method, an FPC-side electrode pad and a package-side electrode pad are closely joined together with a solder layer, and the soldered state after a joining process has not been easily confirmed visually. The present invention provides a solder joint structure including a side face electrode which is formed on each of the side faces of the end parts of an FPC board and a package or PCB board that are to be soldered, extending vertically relative to the faces constituting each of electrode pads on the boards, and which introduces solder. On the side face electrodes of the board end parts, a part of solder that is formed continuously from the solder joint portion is visible and the state of the solder joint between the electrode pads on the two boards can be confirmed. The efficiency of solder joint tests can be improved.
    Type: Application
    Filed: June 17, 2016
    Publication date: July 12, 2018
    Inventors: Mitsuo Usui, Kiyofumi Kikuchi, Ken Tsuzuki, Hiroshi Fukuda, Shuichiro Asakawa, Shin Kamei, Shunichi Soma, Takashi Saida
  • Patent number: 9297961
    Abstract: Even in the case of an optical module including a multi-chip integrated device, an optical module having a smaller size in consideration of the connection to optical fibers. An optical module having a package containing a multi-chip integrated device integrated with an optical functional element having both ends connected to planar lightwave circuits (PLCs) is provided. Each of the PLCs includes a folded waveguide for connecting a light waveguide formed in the optical functional element to optical fibers. The optical module comprises a connecting part connected to each of the PLCs for connecting the optical functional element to the optical fibers in the same face. The optical fibers are taken out from opposed surfaces of the package.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: March 29, 2016
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kota Shikama, Shuichiro Asakawa, Atushi Aratake, Ken Tsuzuki, Shinji Mino
  • Publication number: 20150331194
    Abstract: Even in the case of an optical module including a multi-chip integrated device, an optical module having a smaller size in consideration of the connection to optical fibers. An optical module having a package containing a multi-chip integrated device integrated with an optical functional element having both ends connected to planar lightwave circuits (PLCs) is provided. Each of the PLCs includes a folded waveguide for connecting a light waveguide formed in the optical functional element to optical fibers. The optical module comprises a connecting part connected to each of the PLCs for connecting the optical functional element to the optical fibers in the same face. The optical fibers are taken out from opposed surfaces of the package.
    Type: Application
    Filed: April 24, 2013
    Publication date: November 19, 2015
    Inventors: Kota Shikama, Shuichiro Asakawa, Atushi Aratake, Ken Tsuzuki, Shinji Mino
  • Patent number: 7397977
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: July 8, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama