Patents by Inventor SHUICHIRO SAIGAN

SHUICHIRO SAIGAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10497600
    Abstract: According to the embodiment, the first invention relates to an electrostatic chuck. The electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The first porous part includes sparse portions including pores and a dense portion having a density higher than a density of the sparse portions. Each of the sparse portions extends from the base plate toward the ceramic dielectric substrate. The dense portion is positioned between the sparse portions. The sparse portions include a wall portion provided between the pores and the pores.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 3, 2019
    Assignee: Toto Ltd.
    Inventors: Kosuke Yamaguchi, Jun Shiraishi, Ikuo Itakura, Yutaka Momiyama, Shuichiro Saigan
  • Publication number: 20190287838
    Abstract: According to the embodiment, the first invention relates to an electrostatic chuck. The electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The first porous part includes sparse portions including pores and a dense portion having a density higher than a density of the sparse portions. Each of the sparse portions extends from the base plate toward the ceramic dielectric substrate. The dense portion is positioned between the sparse portions. The sparse portions include a wall portion provided between the pores and the pores.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Kosuke YAMAGUCHI, Jun SHIRAISHI, Ikuo ITAKURA, Yutaka MOMIYAMA, Shuichiro SAIGAN
  • Publication number: 20190287840
    Abstract: According to the embodiment, an electrostatic chuck includes a ceramic dielectric substrate having a first major surface placing a suction object, a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface of the ceramic dielectric substrate and being opposite to the gas introduction path. The first porous part includes a first region positioned on the ceramic dielectric substrate side. The ceramic dielectric substrate includes a first substrate region positioned on the first region side. The first region and the first substrate region are provided in contact with each other, and an average particle diameter in the first region is different from an average particle diameter in the first substrate region.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 19, 2019
    Inventors: Takara KATAYAMA, Kosuke YAMAGUCHI, Ikuo ITAKURA, Yutaka MOMIYAMA, Jun SHIRAISHI, Shuichiro SAIGAN
  • Publication number: 20190287839
    Abstract: According to the embodiment, the electrostatic chuck includes a ceramic dielectric substrate having a first major surface and a second major surface on an opposite side to the first major surface, a base plate supporting the ceramic dielectric substrate and including a gas introduction path, and a first porous part provided at a position between the base plate and the first major surface and being opposite to the gas introduction path. The ceramic dielectric substrate includes a first hole part positioned between the first major surface and the first porous part. At least one of the ceramic dielectric substrate or the first porous part includes a second hole part positioned between the first hole part and the first porous part, and a dimension of the second hole part is smaller than a dimension of the first porous part and larger than a dimension of the first hole part.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 19, 2019
    Inventors: Kosuke YAMAGUCHI, Jun SHIRAISHI, Ikuo ITAKURA, Yutaka MOMIYAMA, Shuichiro SAIGAN
  • Patent number: 9252435
    Abstract: In a fuel cell unit 16 that constitutes a fuel cell module 2 of an SOFC device 1, a collector cap 86a is connected to an inner electrode layer 90 via a seal material 96 as an Ag seal portion. A glass coating 30 (dense body) is filled up between the inner electrode layer 90 and an electrolyte layer 94 and the collector cap 86a to cover an upper end surface 96a of the seal material 96. As such, the fuel cell unit 16 includes the seal material 96 constituting as an Ag seal portion that separates a fuel gas from an oxidant gas, and a glass coating 30 at least partially formed to over at least either the fuel gas side surface of the seal material 96 or an the oxidant gas side surface of the seal material 96.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 2, 2016
    Assignee: TOTO LTD.
    Inventors: Yasuo Kakinuma, Akira Kawakami, Shuichiro Saigan, Shigeru Ando, Chihiro Kobayashi, Masato Ota, Naoki Watanabe, Nobuo Isaka, Yuya Takahashi, Megumi Shimazu
  • Patent number: 8927162
    Abstract: The present invention comprises fuel cells 84 disposed within a fuel cell module 2, a reformer 20, a reformer temperature sensor 148 for detecting a reforming state temperature, and a control section 110 for controlling the operation of the fuel cell module. The control section prohibits the normal startup POX and executes a restart control different from the normal startup POX when the reforming state temperature is at least in a high temperature region within the POX temperature band in a state in which the operation of the solid oxide fuel cell module is stopped.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 6, 2015
    Assignee: Toto Ltd.
    Inventors: Yousuke Akagi, Naoki Watanabe, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8921006
    Abstract: The fuel cell assembly of the present invention comprises a first fuel cell, a second fuel cell disposed adjacent to the first fuel cell, and a current collector for electrically connecting the first fuel cell and the second fuel cell. The first fuel cell and the second fuel cell are respectively furnished with an electrical generating portion for generating electricity, each of the electrical generation portion having a first electrode through the interior of which a first gas flows, a second electrode of a polarity different from the first electrode, on the exterior of which a second gas flows, and an electrolyte disposed between the first electrode and the second electrode. The current collector distributes and sources the current generated in the first fuel cell generating portion from two different locations on the first electrode on the first fuel cell to the second electrode of the second fuel cell.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 30, 2014
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Publication number: 20140227623
    Abstract: In a fuel cell unit 16 that constitutes a fuel cell module 2 of an SOFC device 1, a collector cap 86a is connected to an inner electrode layer 90 via a seal material 96 as an Ag seal portion. A glass coating 30 (dense body) is filled up between the inner electrode layer 90 and an electrolyte layer 94 and the collector cap 86a to cover an upper end surface 96a of the seal material 96. As such, the fuel cell unit 16 includes the seal material 96 constituting as an Ag seal portion that separates a fuel gas from an oxidant gas, and a glass coating 30 at least partially formed to over at least either the fuel gas side surface of the seal material 96 or an the oxidant gas side surface of the seal material 96.
    Type: Application
    Filed: September 27, 2012
    Publication date: August 14, 2014
    Applicant: TOTO LTD.
    Inventors: Yasuo Kakinuma, Akira Kawakami, Shuichiro Saigan, Shigeru Ando, Chihiro Kobayashi, Masato Ota, Naoki Watanabe, Nobuo Isaka, Yuya Takahashi, Megumi Shimazu
  • Patent number: 8795910
    Abstract: The present invention comprises individual fuel cells 84 disposed within a fuel cell module 2; a reformer 20; a reformer temperature sensor 148 and generating chamber temperature sensor 142 for detecting the reforming state temperature inside the reformer, and a control section 110 for controlling the fuel cell module operation. In a state whereby a stopping of fuel cell module operation has been executed from a high temperature, this control section skips the normal startup ATR and executes a restart control by the SR when the reforming state temperature is within the normal startup ATR temperature band and a restart of operation has been executed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: August 5, 2014
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8741495
    Abstract: To provide a solid oxide fuel cell device capable of smooth transition from a startup state to an electrical generating state. The present invention is a solid oxide fuel cell device (1) for generating electricity, having a fuel cell module (2); a reformer (20) for reforming fuel, heated by the combustion of remaining fuel not used in the generation of electricity; a fuel supply means (38); a water supply means (28); an electrical generation oxidant gas supply means (45); and a control means (110) for controlling the fuel supply means and water supply means at the time of startup when the solid oxide fuel cell units are raised to a temperature at which electrical generation is possible; wherein the control means controls the fuel supply means during the SR operation such that electrical generation is started after reducing the fuel supply flow rate prior to starting electrical generation.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: June 3, 2014
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka, Toshiharu Ooe
  • Patent number: 8722278
    Abstract: Disclosed is a solid oxide fuel cell that has a high initial power generation performance and a good power generation durability. The fuel cell comprises at least a fuel electrode, an electrolyte, an air electrode, and a current collecting part disposed on the air electrode, wherein the current collecting part comprises an electroconductive metal and an oxide, the electroconductive metal is silver and palladium, the oxide is a perovskite oxide, and the content of the oxide is more than 0 (zero) and less than 0.111 in terms of weight ratio to the electroconductive metal.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: May 13, 2014
    Assignee: Toto Ltd.
    Inventors: Hiroshi Niimi, Akira Kawakami, Yutaka Momiyama, Shuichiro Saigan
  • Patent number: 8580459
    Abstract: A fuel cell includes plural single cells and first sidewalls disposed on the outer side of a cell stack including the plural single cells. In the first sidewalls, holes for supplying the reactive gas to the cell stack are formed. The single cells are disposed in a row shape along a jetting direction (lateral direction) of the reactive gas jetted from the holes. The holes are formed such that a part of the reactive gas jetted from the holes brushes against at least the single cells disposed in positions closest to the first sidewalls and the remaining part of the reactive gas does not brush against the single cells disposed in the closest positions.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 12, 2013
    Assignee: Toto Ltd.
    Inventors: Yousuke Akagi, Naoki Watanabe, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8431274
    Abstract: The present invention comprises fuel cells 84 disposed within a fuel cell module 2; a reformer 20, a reformer temperature sensor 148 for detecting the temperature of the reformer; and a control section 110 for controlling the operation of a fuel cell module. When a restart of operation is executed in a state whereby stopping of the operation of the fuel cell module is being executed, the normal startup POX is skipped and restart by the ATR is executed, at least within a high temperature region within the POX temperature band, even if the reforming state temperature (Tr, Ts) is within the normal startup POX temperature band W2.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 30, 2013
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Publication number: 20120028143
    Abstract: The present invention comprises fuel cells 84 disposed within a fuel cell module 2, a reformer 20, a reformer temperature sensor 148 for detecting a reforming state temperature, and a control section 110 for controlling the operation of the fuel cell module. The control section prohibits the normal startup POX and executes a restart control different from the normal startup POX when the reforming state temperature is at least in a high temperature region within the POX temperature band in a state in which the operation of the solid oxide fuel cell module is stopped.
    Type: Application
    Filed: March 31, 2010
    Publication date: February 2, 2012
    Applicant: TOTO LTD.
    Inventors: Yousuke Akagi, Naoki Watanabe, Shuichiro Saigan, Nobuo Isaka
  • Publication number: 20120021307
    Abstract: The present invention comprises individual fuel cells 84 disposed within a fuel cell module 2; a reformer 20; a reformer temperature sensor 148 and generating chamber temperature sensor 142 for detecting the reforming state temperature inside the reformer, and a control section 110 for controlling the fuel cell module operation. In a state whereby a stopping of fuel cell module operation has been executed from a high temperature, this control section skips the normal startup ATR and executes a restart control by the SR when the reforming state temperature is within the normal startup ATR temperature band and a restart of operation has been executed.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Applicant: TOTO LTD.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Publication number: 20120021327
    Abstract: The fuel cell assembly of the present invention comprises a first fuel cell, a second fuel cell disposed adjacent to the first fuel cell, and a current collector for electrically connecting the first fuel cell and the second fuel cell. The first fuel cell and the second fuel cell are respectively furnished with an electrical generating portion for generating electricity, each of the electrical generation portion having a first electrode through the interior of which a first gas flows, a second electrode of a polarity different from the first electrode, on the exterior of which a second gas flows, and an electrolyte disposed between the first electrode and the second electrode. The current collector distributes and sources the current generated in the first fuel cell generating portion from two different locations on the first electrode on the first fuel cell to the second electrode of the second fuel cell.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Applicant: TOTO LTD.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Publication number: 20120015262
    Abstract: The present invention comprises fuel cells 84 disposed within a fuel cell module 2; a reformer 20, a reformer temperature sensor 148 for detecting the temperature of the reformer; and a control section 110 for controlling the operation of a fuel cell module. When a restart of operation is executed in a state whereby stopping of the operation of the fuel cell module is being executed, the normal startup POX is skipped and restart by the ATR is executed, at least within a high temperature region within the POX temperature band, even if the reforming state temperature (Tr, Ts) is within the normal startup POX temperature band W2.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 19, 2012
    Applicant: TOTO LTD.
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka
  • Publication number: 20110008701
    Abstract: A fuel cell includes plural single cells and first sidewalls disposed on the outer side of a cell stack including the plural single cells. In the first sidewalls, holes for supplying the reactive gas to the cell stack are formed. The single cells are disposed in a row shape along a jetting direction of the reactive gas jetted from the holes. The holes are formed such that a part of the reactive gas jetted from the holes brushes against at least the single cells disposed in positions closest to the first sidewalls and the remaining part of the reactive gas does not brush against the single cells disposed in the closest positions.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: TOTO LTD.
    Inventors: Yousuke AKAGI, Naoki WATANABE, Shuichiro SAIGAN, Nobuo ISAKA
  • Publication number: 20100304246
    Abstract: To provide a solid oxide fuel cell device capable of smooth transition from a startup state to an electrical generating state. The present invention is a solid oxide fuel cell device (1) for generating electricity, having a fuel cell module (2); a reformer (20) for reforming fuel, heated by the combustion of remaining fuel not used in the generation of electricity; a fuel supply means (38); a water supply means (28); an electrical generation oxidant gas supply means (45); and a control means (110) for controlling the fuel supply means and water supply means at the time of startup when the solid oxide fuel cell units are raised to a temperature at which electrical generation is possible; wherein the control means controls the fuel supply means during the SR operation such that electrical generation is started after reducing the fuel supply flow rate prior to starting electrical generation.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Inventors: Naoki Watanabe, Yousuke Akagi, Shuichiro Saigan, Nobuo Isaka, Toshiharu Ooe
  • Publication number: 20100098999
    Abstract: Disclosed is a solid oxide fuel cell that has a high initial power generation performance and a good power generation durability. The fuel cell comprises at least a fuel electrode, an electrolyte, an air electrode, and a current collecting part disposed on the air electrode, wherein the current collecting part comprises an electroconductive metal and an oxide, the electroconductive metal is silver and palladium, the oxide is a perovskite oxide, and the content of the oxide is more than 0 (zero) and less than 0.111 in terms of weight ratio to the electroconductive metal.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 22, 2010
    Applicant: TOTO LTD.
    Inventors: HIROSHI NIIMI, AKIRA KAWAKAMI, YUTAKA MOMIYAMA, SHUICHIRO SAIGAN