Patents by Inventor Shuji Noda

Shuji Noda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11603501
    Abstract: A method for producing a bio-jet fuel includes a reaction step of hydrogenating, isomerizing, and decomposing a crude oil obtained by a deoxygenation treatment of a raw oil containing a triglyceride and/or a free fatty acid, by using a hydrogenation catalyst and an isomerization catalyst in a hydrogen atmosphere under conditions of a reaction temperature of 180° C. to 350° C. and a pressure of 0.1 MPa to 30 MPa.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 14, 2023
    Assignees: HIBD LABORATORY ASSOCIATION, ENVIRONMENT ENERGY CO., LTD.
    Inventors: Kaoru Fujimoto, Yayoi Murakami, Shuji Noda
  • Publication number: 20210171844
    Abstract: A method for producing a bio-jet fuel includes a reaction step of hydrogenating, isomerizing, and decomposing a crude oil obtained by a deoxygenation treatment of a raw oil containing a triglyceride and/or a free fatty acid, by using a hydrogenation catalyst and an isomerization catalyst in a hydrogen atmosphere under conditions of a reaction temperature of 180° C. to 350° C. and a pressure of 0.1 MPa to 30 MPa.
    Type: Application
    Filed: May 17, 2019
    Publication date: June 10, 2021
    Applicants: HiBD Laboratory Association, ENVIRONMENT ENERGY CO., LTD.
    Inventors: Kaoru FUJIMOTO, Yayoi MURAKAMI, Shuji NODA
  • Patent number: 8106198
    Abstract: A theme of the present invention is to provide a new transition metal complex, useful as a photosensitizer dye for a photoelectric conversion element having an excellent durability and a high photoelectric conversion characteristic. The present invention provides a bivalent transition metal complex constituted of (i) a bipyridyl polyacidic ligand, such as a dicarboxybipyridyl (dcbpy) ligand, as an adsorption site for adsorption onto titanium dioxide particle surfaces; (ii) a ligand, selected from the group consisting of an isothiocyanato group, an isocyanato group, and an isoselenocyanato group and enabling absorption and excitation at long wavelengths and charge transfer; and (iii) a bipyridyl (bpy) ligand, having an alkyl group or an alkoxy group, preferably a long-chain alkyl group, and a conjugately bonded thienylvinylene group, aminophenylenevinylene group, etc.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: January 31, 2012
    Assignee: Shimane Prefectural Government
    Inventors: Ke-Jian Jiang, Shuji Noda, Shozo Yanagida
  • Patent number: 7763223
    Abstract: In a synthetic method for porous silica crystals through a hydrothermal reaction, a method for synthesizing porous silica crystals with a size of 0.5 mm or larger in high reproducibility and efficiency is provided using a method for manufacturing the porous silica crystals, wherein a high concentration area with silicon is formed as a partial area inside a hydrothermal synthesis vessel, and at least a part of a surface-smoothed bulk material is present in the high concentration area with silicon to perform the hydrothermal reaction, the bulk material comprising a compound containing both silicon and oxygen as a supply source for a part or a whole of the structure composition elements of the porous silica crystals.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: July 27, 2010
    Assignees: Shimane Prefectural Government, Shimane University
    Inventors: Shuji Noda, Takanobu Shiomura, Masahiro Tajima, Naoto Imawaka, Yasuaki Okamoto, Takeshi Kubota
  • Publication number: 20090216021
    Abstract: A theme of the present invention is to provide a new transition metal complex, useful as a photosensitizer dye for a photoelectric conversion element having an excellent durability and a high photoelectric conversion characteristic. The present invention provides a bivalent transition metal complex constituted of (i) a bipyridyl polyacidic ligand, such as a dicarboxybipyridyl (dcbpy) ligand, as an adsorption site for adsorption onto titanium dioxide particle surfaces; (ii) a ligand, selected from the group consisting of an isothiocyanato group, an isocyanato group, and an isoselenocyanato group and enabling absorption and excitation at long wavelengths and charge transfer; and (iii) a bipyridyl (bpy) ligand, having an alkyl group or an alkoxy group, preferably a long-chain alkyl group, and a conjugately bonded thienylvinylene group, aminophenylenevinylene group, et.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 27, 2009
    Applicant: SHIMANE PREFECTURAL GOVERNMENT
    Inventors: Ke-Jian Jiang, Shuji Noda, Shozo Yanagida
  • Publication number: 20070248524
    Abstract: In a synthetic method for porous silica crystals through a hydrothermal reaction, a method for synthesizing porous silica crystals with a size of 0.5 mm or larger in high reproducibility and efficiency is provided using a method for manufacturing the porous silica crystals, wherein a high concentration area with silicon is formed as a partial area inside a hydrothermal synthesis vessel, and at least a part of a surface-smoothed bulk material is present in the high concentration area with silicon to perform the hydrothermal reaction, the bulk material comprising a compound containing both silicon and oxygen as a supply source for a part or a whole of the structure composition elements of the porous silica crystals.
    Type: Application
    Filed: September 12, 2005
    Publication date: October 25, 2007
    Applicants: SHIMANE PREFECTURAL GOVERNMENT, SHIMANE UNIVERSITY
    Inventors: Shuji Noda, Takanobu Shiomura, Masahiro Tajima, Naoto Imawaka, Yasuaki Okamoto, Takeshi Kubota
  • Patent number: 6503775
    Abstract: A production method of a micromachine includes a polysilicon film forming step which overlays grooves, defined in an upper surface of a sacrificial layer on a silicon substrate, with polysilicon layer so as to be flat. The production method includes a first processing step for filling the grooves by adding a lower laid portion of the polysilicon layer onto a sacrificial layer. The lower laid portion has a thickness greater than 0.625 times relative to a width of the grooves. The production method of the micromachine further includes a second processing step for making the polysilicon layer to have a predetermined thickness by adding a upper laid portion of the polysilicon layer on the lower laid portion to form the polysilicon layer, the upper laid portion formed by depositing polysilicon which has the same impurity concentration as the lower laid portion does.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: January 7, 2003
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Satoru Nomoto, Masayoshi Takeuchi, Shuji Noda
  • Publication number: 20020037601
    Abstract: A production method of a micromachine includes a polysilicon film forming step which overlays grooves, defined in an upper surface of a sacrificial layer on a silicon substrate, with polysilicon layer so as to be flat. The production method includes a first processing step for filling the grooves by adding a lower laid portion of the polysilicon layer onto a sacrificial layer. The lower laid portion has a thickness greater than 0.625 times relative to a width of the grooves. The production method of the micromachine further includes a second processing step for making the polysilicon layer to have a predetermined thickness by adding a upper laid portion of the polysilicon layer on the lower laid portion to form the polysilicon layer, the upper laid portion formed by depositing polysilicon which has the same impurity concentration as the lower laid portion does.
    Type: Application
    Filed: September 21, 2001
    Publication date: March 28, 2002
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Satoru Nomoto, Masayoshi Takeuchi, Shuji Noda
  • Patent number: 6203096
    Abstract: An energy absorbing structure of a vehicular door has an energy absorbing member that is disposed on a compartment side of an inner panel, at such a position as to substantially face a hip of an occupant sitting on a seat. The energy absorbing member has a block or container shape. A generally rectangular protruded portion is formed together with the energy absorbing member. The protruded portion is protruded from a front-to-rear middle portion of an upper end portion of a bottom wall of the energy absorbing member that faces the inner panel when the energy absorbing member is mounted. The bottom wall has an increased wall thickness and therefore resists bending deformation. The protruded portion is designed so that the protruded portion is substantially prevented from undergoing compression deformation at the time of impact. In a door assembly, the protruded portion protrudes from a service hole formed in the inner panel toward to an outer panel.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: March 20, 2001
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuji Noda, Sotaro Kumazawa
  • Patent number: 4740838
    Abstract: An apparatus for superimposing a display image of vehicle data or position data of the vehicle on video signals of the surroundings of the vehicle. An object picked up is converted into video signals by an image pick-up camera having an image pick-up drive circuit, an amplifier circuit, a wave shaping circuit, a non-linear amplifier circuit, and a diaphragm control circuit. The video signals are gamma corrected in the non-linear amplifier circuit. Superimposed video signals are read from a memory of stored characters, figures or the like and synchronizing signals are mixed into composite video signals. The composite video signals are superimposed with pattern signals, graphic signals, character signals or the like and displayed by using a liquid crystal or a CRT.
    Type: Grant
    Filed: December 4, 1986
    Date of Patent: April 26, 1988
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Yamato Mase, Masami Ishii, Shuji Noda, Yoshihiro Naruse, Hiroshi Takeshita, Shinobu Nagata