Patents by Inventor Shuji Oishi

Shuji Oishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9117594
    Abstract: A photoelectric conversion device provided with an electron transport layer having an excellent electron transport ability and having an excellent photoelectric conversion efficiency, and electronic equipment provided with such a photoelectric conversion device and having a high reliability are provided. A solar cell, to which the photoelectric conversion device is applied, has a first electrode provided on a substrate, a second electrode arranged opposite to the first electrode and retained on a facing substrate, an electron transport layer provided between these electrodes and positioned on the side of the first electrode, a dye layer being in contact with the electron transport layer, and an electrolyte layer provided between the electron transport layer and the second electrode and being in contact with the dye layer. The electron transport layer includes particles of sodium trititanate.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: August 25, 2015
    Assignees: SEIKO EPSON CORPORATION, SHINSHU UNIVERSITY
    Inventors: Yuji Shinohara, Yoshiharu Ajiki, Katsuya Teshima, Shuji Oishi
  • Publication number: 20140137944
    Abstract: A photoelectric conversion device provided with an electron transport layer having an excellent electron transport ability and having an excellent photoelectric conversion efficiency, and electronic equipment provided with such a photoelectric conversion device and having a high reliability are provided. A solar cell, to which the photoelectric conversion device is applied, has a first electrode provided on a substrate, a second electrode arranged opposite to the first electrode and retained on a facing substrate, an electron transport layer provided between these electrodes and positioned on the side of the first electrode, a dye layer being in contact with the electron transport layer, and an electrolyte layer provided between the electron transport layer and the second electrode and being in contact with the dye layer. The electron transport layer includes particles of sodium trititanate.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 22, 2014
    Applicants: SHINSHU UNIVERSITY, SEIKO EPSON CORPORATION
    Inventors: Yuji SHINOHARA, Yoshiharu AJIKI, Katsuya TESHIMA, Shuji OISHI
  • Patent number: 8669625
    Abstract: A photoelectric conversion device provided with an electron transport layer having an excellent electron transport ability and having an excellent photoelectric conversion efficiency, and electronic equipment provided with such a photoelectric conversion device and having a high reliability are provided. A solar cell, to which the photoelectric conversion device is applied, has a first electrode provided on a substrate, a second electrode arranged opposite to the first electrode and retained on a facing substrate, an electron transport layer provided between these electrodes and positioned on the side of the first electrode, a dye layer being in contact with the electron transport layer, and an electrolyte layer provided between the electron transport layer and the second electrode and being in contact with the dye layer. The electron transport layer is constituted of a monocrystalline material of multiple oxide as a main component thereof.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: March 11, 2014
    Assignees: Seiko Epson, Shinshu University
    Inventors: Yuji Shinohara, Yoshiharu Ajiki, Katsuya Teshima, Shuji Oishi
  • Publication number: 20120132267
    Abstract: A photoelectric conversion device provided with an electron transport layer having an excellent electron transport ability and having an excellent photoelectric conversion efficiency, and electronic equipment provided with such a photoelectric conversion device and having a high reliability are provided. A solar cell, to which the photoelectric conversion device is applied, has a first electrode provided on a substrate, a second electrode arranged opposite to the first electrode and retained on a facing substrate, an electron transport layer provided between these electrodes and positioned on the side of the first electrode, a dye layer being in contact with the electron transport layer, and an electrolyte layer provided between the electron transport layer and the second electrode and being in contact with the dye layer. The electron transport layer is constituted of a monocrystalline material of multiple oxide as a main component thereof.
    Type: Application
    Filed: January 17, 2008
    Publication date: May 31, 2012
    Applicants: SHINSHU UNIVERSITY, SEIKO EPSON CORPORATION
    Inventors: Yuji Shinohara, Yoshiharu Ajiki, Katsuya Teshima, Shuji Oishi
  • Publication number: 20110277680
    Abstract: An artificial corundum crystal which can be put into practical use at low costs, and a process for producing the same. The artificial corundum crystal has at least one crystal face selected from {113}, {012}, {014}, {113}, {110}, {101}, {116}, {211}, {122}, {214}, {100}, {125}, {223}, {131}, and {312} faces. The process for producing the artificial corundum crystal is by a flux evaporation method of heating a sample containing a raw material and a flux to precipitate a crystal and grow the crystal by use of flux evaporation as a driving force.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventors: Katsuya TESHIMA, Shuji OISHI
  • Patent number: 7674334
    Abstract: An artificial corundum crystal which can be put into practical use at low costs, and a process for producing the same. The artificial corundum crystal contains a seed crystal and has at least one crystal face selected from a {113} face, a {012} face, a {104} face, a {110} face, a {101} face, a {116} face, a {211} face, a {122} face, a {214} face, a {100} face, a {125} face, a {223} face, a {131} face, and a {312} face. The process for producing the artificial corundum crystal an artificial corundum crystal having a hexagonally dipyramidal includes forming with a seed crystal by a flux evaporation method of heating a sample containing a raw material and a flux to precipitate a crystal and grow the crystal by use of flux evaporation as a driving force.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: March 9, 2010
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Katsuya Teshima, Shuji Oishi
  • Publication number: 20080227617
    Abstract: An artificial corundum crystal which can be put into practical use at low costs, and a process for producing the same. The artificial corundum crystal contains a seed crystal and has at least one crystal face selected from a {113} face, a {012} face, a {104} face, a {110} face, a {101} face, a {116} face, a {211} face, a {122} face, a {214} face, a {100} face, a {125} face, a {223} face, a {131} face, and a {312} face. The process for producing the artificial corundum crystal an artificial corundum crystal having a hexagonally dipyramidal includes forming with a seed crystal by a flux evaporation method of heating a sample containing a raw material and a flux to precipitate a crystal and grow the crystal by use of flux evaporation as a driving force.
    Type: Application
    Filed: February 17, 2005
    Publication date: September 18, 2008
    Inventors: Katsuya Teshima, Shuji Oishi
  • Publication number: 20070098618
    Abstract: An artificial corundum crystal which can be put into practical use at low costs, and a process for producing the same. The artificial corundum crystal has at least one crystal face selected from {113}, {012}, {014}, {113}, {110}, {101}, {116}, {211}, {122}, {214}, {100}, {125}, {131}, and {312} faces. The process for producing the artificial corundum crystal is by a flux evaporation method of heating a sample containing a raw material and a flux to precipitate a crystal and grow the crystal by use of flux evaporation as a driving force.
    Type: Application
    Filed: November 30, 2004
    Publication date: May 3, 2007
    Inventors: Katsuya Teshima, Shuji Oishi