Patents by Inventor Shuji Okada

Shuji Okada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913910
    Abstract: A measuring device for measuring an inspection target on the basis of vibration generated when the inspection target has been irradiated with laser light includes a condensing position deriving portion configured to derive an amount of adjustment of a distance between condensing lenses of a laser condensing unit configured to condense the laser light on the basis of a distance between a laser device configured to radiate the laser light and an irradiation location of the laser light and a communicating portion configured to transmit control information including information representing the amount of adjustment to the laser condensing unit.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: February 27, 2024
    Assignee: National Institutes for Quantum and Radiological Science and Technology
    Inventors: Katsuhiro Mikami, Toshiyuki Kitamura, Shuji Kondo, Hajime Okada, Tetsuya Kawachi, Yoshinori Shimada, Shinri Kurahashi, Masaharu Nishikino, Noboru Hasegawa
  • Patent number: 11608543
    Abstract: The present invention addresses the problem, in methods for producing a metal or alloy by reducing a mixture that contains an oxide ore, of providing an oxide ore smelting method with good productivity and efficiency. The present invention is an oxide ore smelting method for producing a metal or alloy by reducing a mixture that contains an oxide ore, the method comprising at least: a mixing step S1 for mixing an oxide ore with a carbonaceous reducing agent; a mixture-molding step S2 for molding the mixture obtained to obtain a mixture-molded body; and a reducing step S3 for heating the mixture-molded body obtained at a specified reducing temperature in a reducing furnace.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: March 21, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Patent number: 11479832
    Abstract: Provided is a smelting method for producing metal by reducing a mixture that includes an oxide ore such as nickel oxide ore, wherein it is possible to improve productivity by raising the metal recovery rate as well as to inexpensively and efficiently produce high-quality metal. The present invention is a smelting method in which: an oxide ore and a carbonaceous reducing agent are mixed; the resulting mixture is heated and subjected to a reduction treatment; and metal and slag, which are reduction products, are obtained, wherein the reduction treatment is carried out in a state in which one or more surface deposits selected from carbonaceous reducing agents, metal oxides, and oxidation inhibitors are deposited on the surface of the mixture.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 25, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Publication number: 20220136208
    Abstract: A swivel joint for a construction machine can detect a slewing angle of an upper slewing body and has a high maintainability. The swivel joint includes a body, a stem, a lower cover, and a sensor unit. The sensor unit includes: a rotation angle sensor fixedly attached to an upper end of the stem; and a rod having a distal end provided with a detection target to be detected by the rotation angle sensor and a proximal end fastened to the lower cover. The stem is formed with: a rod insertion hole for receiving the rod to be inserted therethrough; and a stem-side drain oil passage for allowing a drain oil to pass therethrough.
    Type: Application
    Filed: March 2, 2020
    Publication date: May 5, 2022
    Applicant: KOBELCO CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Shuji OKADA, Kazuyuki TAKEDA, Haruo NII, Daisuke MOCHIZUKI
  • Patent number: 10626480
    Abstract: In a method for producing a metal or alloy by forming pellets from an oxide ore, a method for smelting an oxide ore, wherein a high-quality metal can be produced. Provided is a method for smelting an oxide ore to produce a metal or alloy by heating for reducing a mixture containing an oxide ore and a carbonaceous reducing agent, wherein the carbonaceous reducing agent is composed of particles (reducing agent particles), the number of reducing agent particles which are contained in the carbonaceous reducing agent and have a maximum particle length of 25 ?m or less is 2% or more and 25% or less of the total number of reducing agent particles contained in the carbonaceous reducing agent, and the average maximum particle length of reducing agent particles having a maximum particle length greater than 25 ?m is 30 ?m or more and 80 ?m or less.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 21, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Publication number: 20200056262
    Abstract: In a method for producing a metal or alloy by forming pellets from an oxide ore, a method for smelting an oxide ore, wherein a high-quality metal can be produced. Provided is a method for smelting an oxide ore to produce a metal or alloy by heating for reducing a mixture containing an oxide ore and a carbonaceous reducing agent, wherein the carbonaceous reducing agent is composed of particles (reducing agent particles), the number of reducing agent particles which are contained in the carbonaceous reducing agent and have a maximum particle length of 25 ?m or less is 2% or more and 25% or less of the total number of reducing agent particles contained in the carbonaceous reducing agent, and the average maximum particle length of reducing agent particles having a maximum particle length greater than 25 ?m is 30 ?m or more and 80 ?m or less.
    Type: Application
    Filed: May 11, 2018
    Publication date: February 20, 2020
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Publication number: 20200024685
    Abstract: Provided is a smelting method in which, for example, a metal oxide such as a nickel oxide ore including nickel oxide is used as a source material and is reduced with a carbonaceous reducing agent to obtain a reduced product, with which method efficient processing can be achieved. This metal oxide smelting method is, for example, a nickel oxide ore smelting method. Specifically, the method includes a reduction process step S3 that has: a drying step S31 in which a mixture that was obtained by mixing a metal oxide and a carbonaceous reducing agent is dried; a preheating step S32 in which the dried mixture is preheated; a reduction step S33 in which the preheated mixture is reduced using a rotary hearth furnace 1, a hearth of which rotates; and a cooling step S35 in which the obtained reduced product is cooled.
    Type: Application
    Filed: January 31, 2018
    Publication date: January 23, 2020
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Publication number: 20200010925
    Abstract: Provided is a smelting method in which, for example, a metal oxide such as a nickel oxide ore including nickel oxide is used as a source material and is reduced with a carbonaceous reducing agent to obtain a reduced product, with which method efficient processing can be achieved. This metal oxide smelting method is, for example, a nickel oxide ore smelting method. Specifically, the method includes a reduction process step that has: a drying step in which a mixture that was obtained by mixing a metal oxide and a carbonaceous reducing agent is dried; a preheating step in which the dried mixture is preheated; a reduction step in which the preheated mixture is reduced using a rotary hearth furnace, said rotary hearth having a hearth that rotates and not having a partition structure in an interior; and a cooling step in which the obtained reduced product is cooled.
    Type: Application
    Filed: January 31, 2018
    Publication date: January 9, 2020
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Publication number: 20190144971
    Abstract: Provided is a smelting method for producing metal by reducing a mixture that includes an oxide ore such as nickel oxide ore, wherein it is possible to improve productivity by raising the metal recovery rate as well as to inexpensively and efficiently produce high-quality metal. The present invention is a smelting method in which: an oxide ore and a carbonaceous reducing agent are mixed; the resulting mixture is heated and subjected to a reduction treatment; and metal and slag, which are reduction products, are obtained, wherein the reduction treatment is carried out in a state in which one or more surface deposits selected from carbonaceous reducing agents, metal oxides, and oxidation inhibitors are deposited on the surface of the mixture.
    Type: Application
    Filed: April 19, 2017
    Publication date: May 16, 2019
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Publication number: 20190119779
    Abstract: The present invention addresses the problem, in methods for producing a metal or alloy by reducing a mixture that contains an oxide ore, of providing an oxide ore smelting method with good productivity and efficiency. The present invention is an oxide ore smelting method for producing a metal or alloy by reducing a mixture that contains an oxide ore, the method comprising at least: a mixing step S1 for mixing an oxide ore with a carbonaceous reducing agent; a mixture-molding step S2 for molding the mixture obtained to obtain a mixture-molded body; and a reducing step S3 for heating the mixture-molded body obtained at a specified reducing temperature in a reducing furnace.
    Type: Application
    Filed: April 26, 2017
    Publication date: April 25, 2019
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada
  • Patent number: 9487484
    Abstract: Provided is a stilbazolium derivative represented by the general formula (I): wherein R1, R2, R3, and R4 independently represent hydrogen, halogen, alkyl, hydroxyl, carboxyl, or amino; R5 represents hydrogen or alkyl; X represents oxygen or NR6 (R6 is hydrogen or alkyl); and Y? represents an anion. In the general formula (I), some or all of hydrogens maybe deuterium.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: November 8, 2016
    Assignees: Arkray, Inc., National University Corporation Yamagata University
    Inventors: Kazuyoshi Aoki, Shuji Okada
  • Publication number: 20160016905
    Abstract: Provided is a stilbazolium derivative represented by the general formula (I): wherein R1, R2, R3, and R4 independently represent hydrogen, halogen, alkyl, hydroxyl, carboxyl, or amino; R5 represents hydrogen or alkyl; X represents oxygen or NR6 (R6 is hydrogen or alkyl); and Y? represents an anion. In the general formula (I), some or all of hydrogens maybe deuterium.
    Type: Application
    Filed: June 23, 2015
    Publication date: January 21, 2016
    Inventors: Kazuyoshi Aoki, Shuji Okada
  • Patent number: 8383034
    Abstract: A ferritic stainless steel sheet for a water heater with excellent corrosion resistance of welds and toughness includes, in terms of mass %, 0.020% or less of C, 0.30 to 1.00% of Si, 1.00% or less of Mn, 0.040% or less of P, 0.010% or less of S, 20.0 to 28.0% of Cr, 0.6% or less of Ni, 0.03 to 0.15% of Al, 0.020% or less of N, 0.0020 to 0.0150% of O, 0.3 to 1.5% of Mo, 0.25 to 0.60% of Nb, and 0.05% or less of Ti, the remainder being composed of Fe and unavoidable impurities, and the ferritic stainless steel sheet satisfying the following formulae (1) and (2): 25?Cr+3.3Mo?30??(1) 0.35?Si+Al?0.85??(2) wherein Cr, Mo, Si, and Al represent the content (mass %) of Cr, Mo, Si, and Al, respectively.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: February 26, 2013
    Assignee: JFE Steel Corporation
    Inventors: Kunio Fukuda, Yoshimasa Funakawa, Shuji Okada, Toshihiro Kasamo, Katsuhiro Kobori, Takumi Ujiro, Tomohiro Ishii
  • Publication number: 20110061777
    Abstract: A ferritic stainless steel sheet and a method for manufacturing the ferritic stainless steel sheet include a composition which contains 0.0030 to 0.012 mass percent of C, 0.13 mass percent or less of Si, 0.25 mass percent or less of Mn, 0.04 mass percent or less of P, 0.005 mass percent or less of S, 0.06 mass percent or less of Al, 0.0030 to 0.012 mass percent of N, 20.5 to 23.5 mass percent of Cr, 0.3 to 0.6 mass percent of Cu, 0.5 mass percent or less of Ni, 0.3 to 0.5 mass percent of Nb, 0.05 to 0.15 mass percent of Ti, and the balance being Fe and inevitable impurities is hot-rolled at a finishing temperature of 900° C. or more and at a coiling temperature of 400 to 550° C., softening annealing is performed on an obtained hot-rolled steel sheet, picking is further performed, and cold rolling is subsequently performed.
    Type: Application
    Filed: June 18, 2008
    Publication date: March 17, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Tomohiro Ishii, Yoshimasa Funakawa, Shuji Okada, Masayuki Ohta
  • Publication number: 20100061878
    Abstract: A ferritic stainless steel sheet for a water heater with excellent corrosion resistance of welds and toughness includes, in terms of mass %, 0.020% or less of C, 0.30 to 1.00% of Si, 1.00% or less of Mn, 0.040% or less of P, 0.010% or less of S, 20.0 to 28.0% of Cr, 0.6% or less of Ni, 0.03 to 0.15% of Al, 0.020% or less of N, 0.0020 to 0.0150% of 0, 0.3 to 1.5% of Mo, 0.25 to 0.60% of Nb, and 0.05% or less of Ti, the remainder being composed of Fe and unavoidable impurities, and the ferritic stainless steel sheet satisfying the following formulae (1) and (2): 25?Cr+3.3Mo?30??(1) 0.35?Si+Al?0.85??(2) wherein Cr, Mo, Si, and Al represent the content (mass %) of Cr, Mo, Si, and Al, respectively.
    Type: Application
    Filed: January 7, 2008
    Publication date: March 11, 2010
    Inventors: Kunio Fukuda, Yoshimasa Funakawa, Shuji Okada, Toshihiro Kasamo, Katsuhiro Kobori, Takumi Ujiro, Tomohiro Ishii
  • Patent number: 7396560
    Abstract: A method for preparation of inorganic fine particle-organic crystal hybrid fine particle comprising; pouring an organic material having ?-conjugated bond as a water soluble solution into aqueous dispersion in which inorganic fine particles of 50 nm or less selected from the compound group consisting of metal fine particles, semi-conductor fine particles, fine particles of inorganic fluorescent material and fine particle of inorganic luminescent material, are dispersed, co-precipitating said inorganic fine particle which forms a core into said organic material which forms a shell in said dispersion and forming shell of fine crystal of said organic material on the surface of the core of said inorganic fine particles of 50 nm or less by controlling the size of said inorganic fine particle and by controlling the adding amount of said organic material.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: July 8, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Hachiro Nakanishi, Hidetoshi Oikawa, Shuji Okada, Hitoshi Kasai
  • Patent number: 7186289
    Abstract: There is provided a nickel powder suitable as conductive particles for use in conductive paste and conductive resin, that is inexpensive, has superior weather resistance, low resistivity when kneaded with resin, and is stable when used in the long-term, and a production method therefor. A nickel powder is produced by a two stage reduction and precipitation process from an aqueous solution containing a bivalent nickel salt, wherein an average primary particle diameter is 0.2 ?m to 2.0 ?m as measured with a scanning electron microscope (SEM), wherein an average secondary particle diameter is 8 ?m to 50 ?m according to laser particle size distribution measurement, wherein a tap density is 0.5 g/ml to 2.0 g/ml, wherein a cobalt content is 1 to 20 weight %. The cobalt may be contained in only the surface layer of the nickel powder at a content of 1 weight % to 40 weight %.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 6, 2007
    Assignee: Sunitomo Metal Mining Co., Ltd.
    Inventors: Toshihiro Kato, Shuji Okada, Shoji Futaki
  • Publication number: 20060076298
    Abstract: The process for producing highly concentrated nanometer-size fine particles of an organic pigment, which comprises dissolving the organic pigment in an amide solvent, especially an organic solvent comprising at least 50 vol % 1-methyl-2-pyrrodinone, and pouring the resultant organic pigment solution with stirring into a poor solvent which is not compatible with the organic pigment. The pigment may be a quinacridone pigment, phthalocyanine pigment etc. Any atmospheric pressure to a sub-critical and/or supercritical state can be employed as the production conditions.
    Type: Application
    Filed: April 2, 2003
    Publication date: April 13, 2006
    Inventors: Hachiro Nakanishi, Koichi Baba, Hitoshi Kasai, Hidetoshi Oikawa, Shuji Okada
  • Publication number: 20060039984
    Abstract: A method for preparation of porous polyimide microparticles comprising, forming polyamide acid microparticles by pouring polymer solution prepared by dissolving polyamide acid containing 0.5 to 80 weight % of alkali metal salt to polyamide acid by 0.1 to 15 weight % concentration into a poor solvent selected from the group consisting of aliphatic solvents, alicyclic solvents, aromatic solvents, CS2 and mixture of two or more these solvents and the temperature of which is adjusted to the range from ?20° C. to 60° C., wherein particle size of said polyamide acid microparticles is adjusted to 50 nm to 10000 nm by controlling the temperature of said poor solvent, pore size of said polyamide acid microparticles is adjusted to the range from 20 nm to 500 nm and porosity of said polyamide acid microparticles is adjusted to the range from 0.
    Type: Application
    Filed: July 9, 2003
    Publication date: February 23, 2006
    Inventors: Hachiro Nakanishi, Hitoshi Kasai, Hirohiko Miura, Hidetoshi Oikawa, Shuji Okada
  • Publication number: 20050072270
    Abstract: There is provided a nickel powder suitable as conductive particles for use in conductive paste and conductive resin, that is inexpensive, has superior weather resistance, low resistivity when kneaded with resin, and is stable when used in the long-term, and a production method therefor. A nickel powder is produced by a two stage reduction and precipitation process from an aqueous solution containing a bivalent nickel salt, wherein an average primary particle diameter is 0.2 ?m to 2.0 ?m as measured with a scanning electron microscope (SEM), wherein an average secondary particle diameter is 8 ?m to 50 ?m according to laser particle size distribution measurement, wherein a tap density is 0.5 g/ml to 2.0 g/ml, wherein a cobalt content is 1 to 20 weight %. The cobalt may be contained in only the surface layer of the nickel powder at a content of 1 weight % to 40 weight %.
    Type: Application
    Filed: October 19, 2004
    Publication date: April 7, 2005
    Inventors: Toshihiro Kato, Shuji Okada, Shoji Futaki