Patents by Inventor Shukun QI

Shukun QI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11315824
    Abstract: A method for manufacturing a trench isolation structure comprising forming a shallow trench having a wider upper section and a narrower lower section in a wafer surface, removing part of the silicon oxide by etching, forming a silicon oxide corner structure at a corner at a top corner of the shallow trench by thermal oxidation, depositing silicon nitride on the wafer surface to cover surfaces of the shallow trench silicon oxide and the silicon oxide corner structure, dry etching the silicon nitride on the shallow trench silicon oxide surface thereby forming masking silicon nitride residues extending into the trench, etching downwards to form a deep trench, forming silicon oxide layers on a side wall and the bottom of the deep trench, depositing polycrystalline silicon in the shallow and deep trenches, removing the silicon nitride, and forming silicon oxide in the shallow trench to cover the polycrystalline silicon.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: April 26, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun Qi
  • Patent number: 11127840
    Abstract: Disclosed is a method for manufacturing an isolation structure for LDMOS, the method comprising: forming a first groove on the surface of a wafer; filling the first groove with silicon oxide; removing part of the surface of the silicon oxide within the first groove by means of etching; forming a silicon oxide corner structure at the corner of the top of the first groove by means of thermal oxidation; depositing a nitrogen-containing compound on the surface of the wafer to cover the surface of the silicon oxide within the first groove and the surface of the silicon oxide corner structure; dry-etching the nitrogen-containing compound to remove the nitrogen-containing compound from the surface of the silicon oxide within the first groove, and thereby forming a nitrogen-containing compound side wall residue; with the nitrogen-containing compound side wall residue as a mask, continuing to etch downwards to form a second groove; forming a silicon oxide layer on the side wall and the bottom of the second groove; rem
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: September 21, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun Qi, Guipeng Sun
  • Patent number: 11088253
    Abstract: A gate structure of a semiconductor device, includes: a trench gate and a planar gate including a plurality of polysilicon structures (406) separated from each other; the gate structure of the semiconductor device further includes a well region (503) being adjacent to the trench gate and being disposed under the planar gate; a first conduction type doped region (504) being disposed in the well region (503) and including a plurality of regions separated from each other, wherein each region is disposed under adjacent polysilicon structures (406), and respective regions are electrically connected to the planar gate; and a source (504a) being disposed in the well region (503); wherein the trench gate includes: a silicon oxide filler (202) including a side wall silicon oxide and a bottom silicon oxide; a control gate (402) being located over the trench gate, wherein a side wall of the control gate is enclosed by the side wall silicon oxide, and the control gate (402) is electrically-connected to the planar gate; a
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: August 10, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun Qi
  • Patent number: 10770572
    Abstract: A lateral insulated-gate bipolar transistor and a manufacturing method therefor. The lateral insulated-gate bipolar transistor comprises a substrate, an anode terminal and a cathode terminal on the substrate, and a drift region and a gate electrode located between the anode terminal and the cathode terminal. The anode terminal comprises an N-shaped buffer zone on the substrate, a P well in the N-shaped buffer zone, an N+ zone in the P well, a groove located above the N+ zone and partially encircled by the P well, polycrystalline silicon in the groove, P+ junctions at two sides of the groove, and N+ junctions at two sides of the P+ junctions.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: September 8, 2020
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun Qi
  • Publication number: 20200013864
    Abstract: A gate structure of a semiconductor device, includes: a trench gate and a planar gate including a plurality of polysilicon structures (406) separated from each other; the gate structure of the semiconductor device further includes a well region (503) being adjacent to the trench gate and being disposed under the planar gate; a first conduction type doped region (504) being disposed in the well region (503) and including a plurality of regions separated from each other, wherein each region is disposed under adjacent polysilicon structures (406), and respective regions are electrically connected to the planar gate; and a source (504a) being disposed in the well region (503); wherein the trench gate includes: a silicon oxide filler (202) including a side wall silicon oxide and a bottom silicon oxide; a control gate (402) being located over the trench gate, wherein a side wall of the control gate is enclosed by the side wall silicon oxide, and the control gate (402) is electrically-connected to the planar gate; a
    Type: Application
    Filed: July 3, 2018
    Publication date: January 9, 2020
    Inventor: Shukun Qi
  • Publication number: 20200006529
    Abstract: Disclosed is a method for manufacturing an isolation structure for LDMOS, the method comprising: forming a first groove on the surface of a wafer; filling the first groove with silicon oxide; removing part of the surface of the silicon oxide within the first groove by means of etching; forming a silicon oxide corner structure at the corner of the top of the first groove by means of thermal oxidation; depositing a nitrogen-containing compound on the surface of the wafer to cover the surface of the silicon oxide within the first groove and the surface of the silicon oxide corner structure; dry-etching the nitrogen-containing compound to remove the nitrogen-containing compound from the surface of the silicon oxide within the first groove, and thereby forming a nitrogen-containing compound side wall residue; with the nitrogen-containing compound side wall residue as a mask, continuing to etch downwards to form a second groove; forming a silicon oxide layer on the side wall and the bottom of the second groove; rem
    Type: Application
    Filed: July 3, 2018
    Publication date: January 2, 2020
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun QI, Guipeng SUN
  • Patent number: 10505036
    Abstract: A lateral diffused metal oxide semiconductor field effect transistor, comprising a substrate, a gate, a source, a drain, a body region, a field oxide region between the source and drain, and a first well region and second well region on the substrate. The second well region below the gate is provided with a plurality of gate doped regions, and a polycrystalline silicon gate of the gate is a multi-segment structure, each segment being separated from the others, with each gate doped region being disposed below the spaces between each segment of the polycrystalline silicon gate. Each of the gate doped regions is electrically connected to the segment that is in a direction nearest the source from among the two polycrystalline silicon gate segments on either side thereof.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: December 10, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun Qi, Guipeng Sun
  • Publication number: 20190245069
    Abstract: A lateral insulated-gate bipolar transistor and a manufacturing method therefor. The lateral insulated-gate bipolar transistor comprises a substrate, an anode terminal and a cathode terminal on the substrate, and a drift region and a gate electrode located between the anode terminal and the cathode terminal. The anode terminal comprises an N-shaped buffer zone on the substrate, a P well in the N-shaped buffer zone, an N+ zone in the P well, a groove located above the N+ zone and partially encircled by the P well, polycrystalline silicon in the groove, P+ junctions at two sides of the groove, and N+ junctions at two sides of the P+ junctions.
    Type: Application
    Filed: June 21, 2017
    Publication date: August 8, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun QI
  • Patent number: 10249707
    Abstract: A laterally diffused metal oxide semiconductor field-effect transistor, comprising a substrate (110), a source electrode (150), a drain electrode (140), a body region (160), and a well region on the substrate, the well region comprising: an insertion-type well (122) having P-type doping, being arranged below the drain electrode and being connected to the drain electrode; N wells (124), arranged on two sides of the insertion-type well; and P wells (126), arranged next to the N wells and being connected to the N wells; the source electrode and the body region are arranged in the P well.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 2, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun Qi
  • Patent number: 10199495
    Abstract: A laterally diffused metal-oxide semiconductor field-effect transistor, comprising a substrate, a first conductivity type well region, a second conductivity type well region, a drain electrode in the first conductivity type well region, a source electrode and a body region in the second conductivity type well region, and a gate electrode arranged across surfaces of the first conductivity type well region and the second conductivity type well region, and also comprising a floating layer ring arranged on the top of the first conductivity type well region and located between the gate electrode and the drain electrode and a plurality of groove polysilicon electrodes running through the floating layer ring and stretching into the first conductivity type well region.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 5, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun Qi, Guipeng Sun
  • Publication number: 20180342609
    Abstract: A lateral diffused metal oxide semiconductor field effect transistor, comprising a substrate, a gate, a source, a drain, a body region, a field oxide region between the source and drain, and a first well region and second well region on the substrate. The second well region below the gate is provided with a plurality of gate doped regions, and a polycrystalline silicon gate of the gate is a multi-segment structure, each segment being separated from the others, with each gate doped region being disposed below the spaces between each segment of the polycrystalline silicon gate. Each of the gate doped regions is electrically connected to the segment that is in a direction nearest the source from among the two polycrystalline silicon gate segments on either side thereof.
    Type: Application
    Filed: August 25, 2016
    Publication date: November 29, 2018
    Inventors: Shukun QI, Guipeng SUN
  • Publication number: 20180286976
    Abstract: A laterally diffused metal-oxide semiconductor field-effect transistor, comprising a substrate, a first conductivity type well region, a second conductivity type well region, a drain electrode in the first conductivity type well region, a source electrode and a body region in the second conductivity type well region, and a gate electrode arranged across surfaces of the first conductivity type well region and the second conductivity type well region, and also comprising a floating layer ring arranged on the top of the first conductivity type well region and located between the gate electrode and the drain electrode and a plurality of groove polysilicon electrodes running through the floating layer ring and stretching into the first conductivity type well region.
    Type: Application
    Filed: August 18, 2016
    Publication date: October 4, 2018
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun QI, Guipeng SUN
  • Patent number: 10084073
    Abstract: Provided is a lateral insulated-gate bipolar transistor (LIGBT), comprising a substrate (10), an anode terminal and a cathode terminal on the substrate (10), and a drift region (30) and a gate (61) located between the anode terminal and the cathode terminal. The anode terminal comprises a P-type buried layer (52) on the substrate (10), an N-type buffer region (54) on the P-type buried layer (52), and a P+ collector region (56) on the surface of the N-type buffer region (54). The LIGBT further comprises a trench gate adjacent to the anode terminal, wherein the trench gate penetrates from the surfaces of the N-type buffer region (54) and the P+ collector region (56) to the P-type buried layer (52), and the trench gate comprises an oxidation layer (51) on the inner surface of a trench and polysilicon (53) filled into the oxidation layer.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: September 25, 2018
    Assignee: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Shukun Qi
  • Patent number: 10014392
    Abstract: Provided is a laterally diffused metal-oxide-semiconductor field-effect transistor, comprising a substrate (110), a source (150), a drain (140), a body region (160), a P-type field-limiting ring (135), and a well region on the substrate (110); the well region comprises an inserted well (122), which has P-type doping and is disposed below the drain and connected to the drain; N wells (124) disposed at the two sides of the inserted well (122); a P well (126) disposed next to the N well (124) and connected to the N well (124); a P-type field-limiting ring (135), which is disposed inside the N well (124), is a closed ring-shaped structure, and is located at the periphery below the drain (140); the inserted well (122) extends in its longitudinal direction to the position where it is in contact with said P-type field-limiting ring (135); the source (150) and the body region (160) are disposed inside the P well (126).
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 3, 2018
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun Qi, Guangsheng Zhang, Guipeng Sun, Sen Zhang
  • Publication number: 20180122921
    Abstract: Provided is a laterally diffused metal-oxide-semiconductor field-effect transistor, comprising a substrate (110), a source (150), a drain (140), a body region (160), a P-type field-limiting ring (135), and a well region on the substrate (110); the well region comprises an inserted well (122), which has P-type doping and is disposed below the drain and connected to the drain; N wells (124) disposed at the two sides of the inserted well (122); a P well (126) disposed next to the N well (124) and connected to the N well (124); a P-type field-limiting ring (135), which is disposed inside the N well (124), is a closed ring-shaped structure, and is located at the periphery below the drain (140); the inserted well (122) extends in its longitudinal direction to the position where it is in contact with said P-type field-limiting ring (135); the source (150) and the body region (160) are disposed inside the P well (126).
    Type: Application
    Filed: January 29, 2016
    Publication date: May 3, 2018
    Inventors: Shukun QI, Guangsheng ZHANG, Guipeng SUN, Sen ZHANG
  • Publication number: 20180114831
    Abstract: A laterally diffused metal oxide semiconductor field-effect transistor, comprising a substrate (110), a source electrode (150), a drain electrode (140), a body region (160), and a well region on the substrate, the well region comprising: an insertion-type well (122) having P-type doping, being arranged below the drain electrode and being connected to the drain electrode; N wells (124), arranged on two sides of the insertion-type well; and P wells (126), arranged next to the N wells and being connected to the N wells; the source electrode and the body region are arranged in the P well.
    Type: Application
    Filed: January 29, 2016
    Publication date: April 26, 2018
    Inventor: Shukun QI
  • Publication number: 20180069107
    Abstract: Provided is a lateral insulated-gate bipolar transistor (LIGBT), comprising a substrate (10), an anode terminal and a cathode terminal on the substrate (10), and a drift region (30) and a gate (61) located between the anode terminal and the cathode terminal. The anode terminal comprises a P-type buried layer (52) on the substrate (10), an N-type buffer region (54) on the P-type buried layer (52), and a P+ collector region (56) on the surface of the N-type buffer region (54). The LIGBT further comprises a trench gate adjacent to the anode terminal, wherein the trench gate penetrates from the surfaces of the N-type buffer region (54) and the P+ collector region (56) to the P-type buried layer (52), and the trench gate comprises an oxidation layer (51) on the inner surface of a trench and polysilicon (53) filled into the oxidation layer.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 8, 2018
    Inventor: Shukun QI
  • Patent number: 9905680
    Abstract: A lateral insulated gate bipolar transistor comprises a substrate (10); an anode terminal located on the substrate, comprising: an N-type buffer region (51) located on the substrate (10); a P well (53) located in the N-type buffer region; an N-region (55) located in the P well (53); two P+ shallow junctions (57) located on a surface of the P well (53); and an N+ shallow junction (59) located between the two P+ shallow junctions (57); a cathode terminal located on the substrate; a draft region (30) between the anode terminal and cathode terminal; and a gate (62) between the anode terminal and cathode terminal.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: February 27, 2018
    Assignee: CSMC Technologies Fab1 Co., Ltd.
    Inventor: Shukun Qi
  • Publication number: 20170352749
    Abstract: A lateral insulated gate bipolar transistor comprises a substrate (10); an anode terminal located on the substrate, comprising: an N-type buffer region (51) located on the substrate (10); a P well (53) located in the N-type buffer region; an N-region (55) located in the P well (53); two P+ shallow junctions (57) located on a surface of the P well (53); and an N+ shallow junction (59) located between the two P+ shallow junctions (57); a cathode terminal located on the substrate; a draft region (30) between the anode terminal and cathode terminal; and a gate (62) between the anode terminal and cathode terminal.
    Type: Application
    Filed: September 10, 2015
    Publication date: December 7, 2017
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Shukun QI