Patents by Inventor Shukun Sun

Shukun Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9421533
    Abstract: A catalyst for synthesizing 1-hexene from ethylene trimerization and its application are provided. Said catalyst consists of (a) the compound containing P and N, (b) electron donor, (c) Cr compound, (d) carrier and (e) accelerator. The molar ratio of (a), (b), (c), (d) and (e) is 0.5-100:0.5-100:1:0.5-10:50-5000. The catalyst is prepared by mixing the components of (a)-(e) in an ethylene trimerization apparatus in situ and ethylene is introduced into the apparatus continuously. The prepared catalyst can be used to synthesize 1-hexene from ethylene trimerization in the inert solvents. The trimerization is performed at 30-150° C. and 0.5-10.0 MPa for 0.1-4 hours. The catalyst has high catalytic activity and high 1-hexene selectivity. During the process of ethylene trimerization, by-product polyethylene does not stick to the apparatus.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: August 23, 2016
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Gang Wang, Sihan Wang, Zhonghua Yang, Jiabo Qu, Baojun Zhang, Qian Chen, Deshun Zhang, Libo Wang, Yali Wang, Buwei Yu, Xiuhui Wang, Fuling Huang, Xuemei Han, Dongmei Niu, Shukun Sun, Wenchao Zhang, Hua Li, Gongchen Yan
  • Patent number: 9248430
    Abstract: A method for synthesis of 1-decene oligomer is provided, wherein 1-decene is polymerized at 80-120° C., 0.8-1.4 MPa in the presence of aluminum trichloride catalyst supported on gamma-alumina and n-hexane solvent where the volume ratio of 1-decene to n-hexane is 3:8-4:1. The catalyst is treated as follows: impregnating gamma-alumina carrier in 0.5-2.0 M of hydrochloric acid, sulfuric acid, nitric acid or mixtures thereof, then vacuum drying at 80-100° C. and calcining at 400-800° C.; dissolving 5-10 g of anhydrous aluminum trichloride in 100 ml of tetrachloromethane, trichloromethane or dichloromethane solvent; adding the obtained solution into 10-20 g of activated alumina carrier and obtaining the catalyst after vacuum drying. The conversion of 1-decene is 50 wt % or more. The oligomer has a kinematic viscosity at 40° C. of 6.0-25 mm2/s and a viscosity index of 160-262.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 2, 2016
    Assignees: PETROCHINA COMPANY LIMITED, EAST CHINA UNIVERSITY OF SCIENCE
    Inventors: Fuling Huang, Puke Mi, Sihan Wang, Jinhua Qian, Qian Chen, Sheng Xu, Jianzhong Li, Gang Wang, Baojun Zhang, Min Liu, Guizhi Wang, Xuemei Han, Jiabo Qu, Panfeng Lu, Shukun Sun, Xiuhui Wang, Yuxin Gao, Deshun Zhang, Ling Jiang, Buwei Yu, Libo Wang, Yali Wang, Lingting Fan, Peng Wei, Wei Liu, Guiyue Guo
  • Publication number: 20120310025
    Abstract: A catalyst for synthesizing 1-hexene from ethylene trimerization and its application are provided. Said catalyst consists of (a) the compound containing P and N, (b) electron donor, (c) Cr compound, (d) carrier and (e) accelerator. The molar ratio of (a), (b), (c), (d) and (e) is 0.5-100:0.5-100:1:0.5-10:50-5000. The catalyst is prepared by mixing the components of (a)-(e) in an ethylene trimerization apparatus in situ and ethylene is introduced into the apparatus continuously. The prepared catalyst can be used to synthesize 1-hexene from ethylene trimerization in the inert solvents. The trimerization is performed at 30-150° C. and 0.5-10.0 MPa for 0.1-4 hours. The catalyst has high catalytic activity and high 1-hexene selectivity. During the process of ethylene trimerization, by-product polyethylene does not stick to the apparatus.
    Type: Application
    Filed: July 22, 2010
    Publication date: December 6, 2012
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Gang Wang, Sihan Wang, Zhonghua Yang, Jiabo Qu, Baojun Zhang, Qian Chen, Deshun Zhang, Libo Wang, Yali Wang, Buwei Yu, Xiuhui Wang, Fuling Huang, Xuemei Han, Dongmei Niu, Shukun Sun, Wenchao Zhang, Hua Li, Gongchen Yan
  • Publication number: 20120232321
    Abstract: A method for synthesis of 1-decene oligomer is provided, wherein 1-decene is polymerized at 80-120° C., 0.8-1.4 MPa in the presence of aluminum trichloride catalyst supported on gamma-alumina and n-hexane solvent where the volume ratio of 1-decene to n-hexane is 3:8-4:1. The catalyst is treated as follows: impregnating gamma-alumina carrier in 0.5-2.0 mol of hydrochloric acid, sulfuric acid, nitric acid or mixtures thereof, then vacuum drying at 80-100° C. and calcining at 400-800° C.; dissolving 5-10 g of anhydrous aluminum trichloride in 100 ml of tetrachloromethane, trichloromethane or dichloromethane solvent; adding the obtained solution into 10-20 g of activated alumina carrier and obtaining the catalyst after vacuum drying. The conversion rate of 1-decene is 50 wt % or more. The oligomer has a kinematic viscosity at 40° C. of 6.0-25 mm2/s and a viscosity index of 160-262.
    Type: Application
    Filed: July 22, 2010
    Publication date: September 13, 2012
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Fuling Huang, Puke Mi, Sihan Wang, Jinhua Qian, Qian Chen, Sheng Xu, Jianzhong Li, Gang Wang, Baojun Zhang, Min Liu, Guizhi Wang, Xuemei Han, Jiabo Qu, Panfeng Lu, Shukun Sun, Xiuhui Wang, Yuxin Gao, Deshun Zhang, Ling Jiang, Buwei Yu, Libo Wang, Yali Wang, Lingting Fan, Peng Wei, Wei Liu, Guiyue Guo
  • Patent number: 7786336
    Abstract: The present invention relates to a catalyst composition for ethylene oligomerization and the use thereof. Such catalyst composition includes chromium compound, ligand containing P and N, activator and accelerator; wherein the chromium compound is selected from the group consisting of acetyl acetone chromium, THF-chromium chloride and Cr(2-ethylhecanoate)3; general formula of the ligand containing P and N is shown as: in which R1, R2, R3 and R4 are phenyl, benzyl, or naphthyl. R5 is isopropyl, butyl, cyclopropyl, cyclopentyl, cyclohexyl or fluorenyl; the activatior is methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane and/or butyl aluminoxane; the accelerator is selected from the group consisting of 1,1,2,2,-tetrachloroethane, 1,1,2,2-tetrabromoethane, 1,1,2,2-tetrafluoroethane, and compounds having a formula of X1R6X2, in which X1 and X2 are F, Cl, Br, I or alkoxyl, R6 is alkylene or arylene group; the molar ratio of chromium compound, ligand containing P and N, activator and accelerator is 1:0.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 31, 2010
    Assignee: Petrochina Company Limited
    Inventors: Baojun Zhang, Tao Jiang, Jianzhong Li, Lihua Xing, Yingnan Ning, Shukun Sun, Dongting Kuang, Yongcheng Sun, Yunguang Han, Qian Chen, Hongxia Chen, Deshun Zhang, Yulong Li, Yongjun Zhang, Huimin Yuan, Sihan Wang, Guizhi Wang, Jingyuan Zhang
  • Publication number: 20070232481
    Abstract: The present invention relates to a catalyst composition for ethylene oligomerization and the use thereof. Such catalyst composition includes chromium compound, ligand containing P and N, activator and accelerator; wherein the chromium compound is selected from the group consisting of acetyl acetone chromium, THF-chromium chloride and/or Cr(2-ethylhecanoate)3; general formula of the ligand containing P and N is shown as: in which R1, R2, R3 and R4 are phenyl, benzyl, or naphthyl. R5 is isopropyl, butyl, cyclopropyl, cyclopentyl, cyclohexyl or fluorenyl; the activatior is methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane and/or butyl aluminoxane; general formula of the accelerator is X1R6X2, in which X1 and X2 are F, Cl, Br, I or alkoxyl, R6 is alkyl or aryl; the molar ratio of a, b, c and d is 1:0.5˜10:50˜3000:0.5˜10.
    Type: Application
    Filed: March 9, 2007
    Publication date: October 4, 2007
    Inventors: Baojun Zhang, Tao Jiang, Jianzhong Li, Lihua Xing, Yingnan Ning, Shukun Sun, Dongting Kuang, Yongcheng Sun, Yunguang Han, Qian Chen, Hongxia Chen, Deshun Zhang, Yulong Li, Yongjun Zhang, Huimin Yuan, Sihan Wang, Guizhi Wang, Jingyuan Zhang