Patents by Inventor Shun-Fa Huang

Shun-Fa Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7361566
    Abstract: A method of forming poly-silicon thin film transistors is described. An amorphous silicon thin film transistor is formed on a substrate, and then the Infrared (IR) heating process is used. A gate metal and source/drain metal are heated rapidly, and conduct heat energy to an amorphous silicon layer. Next, crystallization occurs in the amorphous silicon layer to form poly-silicon. Therefore a poly-silicon thin film transistor is produced.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 22, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Lin Chen, Shun-Fa Huang, Liang-Tang Wang
  • Publication number: 20060258064
    Abstract: A method of forming poly-silicon thin film transistors is described. An amorphous silicon thin film transistor is formed on a substrate, and then the Infrared (IR) heating process is used. A gate metal and source/drain metal are heated rapidly, and conduct heat energy to an amorphous silicon layer. Next, crystallization occurs in the amorphous silicon layer to form poly-silicon. Therefore a poly-silicon thin film transistor is produced.
    Type: Application
    Filed: June 30, 2006
    Publication date: November 16, 2006
    Inventors: Chi-Lin Chen, Shun-Fa Huang, Liang-Tang Wang
  • Patent number: 7094656
    Abstract: A method of forming poly-silicon thin film transistors is described. An amorphous silicon thin film transistor is formed on a substrate, and then the Infrared (IR) heating process is used. A gate metal and source/drain metal are heated rapidly, and conduct heat energy to an amorphous silicon layer. Next, crystallization occurs in the amorphous silicon layer to form poly-silicon. Therefore a poly-silicon thin film transistor is produced.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 22, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Lin Chen, Shun-Fa Huang, Liang-Tang Wang
  • Patent number: 7045441
    Abstract: A method for forming a, single-crystal silicon layer on a transparent substrate. A transparent substrate having an amorphous silicon layer formed thereon and a silicon wafer having a hydrogen ion layer formed therein are provided. The silicon wafer is then reversed and laminated onto the amorphous silicon layer so that a layer of single-crystal silicon is between the hydrogen ion layer and the amorphous silicon layer. The laminated silicon wafer and the amorphous silicon layer are then subjected to laser or infrared light to cause chemical bonding of the single crystal silicon layer and the amorphous silicon layer and inducing a hydro-cracking reaction thereby separating the silicon wafer is and the transparent substrate at the hydrogen ion layer, and leaving the single-crystal silicon layer on the transparent substrate.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: May 16, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu
  • Patent number: 6977206
    Abstract: The present invention relates to a heating plate crystallization method used in the crystallization process for the poly-silicon thin-film transistor, and more particularly, the present invention relates to a heating plate crystallization method by using a pulsed rapid thermal annealing process (PRTP). By means of the characteristic provided by the present invention, namely, the heating plate area has a better absorption rate to the infrared rays and has a high thermal stability. The heating plate area is used for absorbing the infrared rays, and after the heating, the energy is indirectly transferred to the amorphous layer via a thermal conduction method so that the amorphous layer will be rapidly crystallized to form the poly-silicon. Furthermore, the present invention uses the pulsed rapid thermal annealing process (PRTP) using the infrared rays to instantly heat, to selectively heat the materials by taking the advantage that different materials have different absorption rates to the infrared rays.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: December 20, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Shun-Fa Huang, Chi-Lin Chen, Chiung-Wei Lin
  • Publication number: 20050074930
    Abstract: A method of forming poly-silicon thin film transistors is described. An amorphous silicon thin film transistor is formed on a substrate, and then the Infrared (IR) heating process is used. A gate metal and source/drain metal are heated rapidly, and conduct heat energy to an amorphous silicon layer. Next, crystallization occurs in the amorphous silicon layer to form poly-silicon. Therefore a poly-silicon thin film transistor is produced.
    Type: Application
    Filed: December 11, 2003
    Publication date: April 7, 2005
    Inventors: Chi-Lin Chen, Shun-Fa Huang, Liang-Tang Wang
  • Publication number: 20040253797
    Abstract: The present invention relates to a heating plate crystallization method used in the crystallization process for the poly-silicon thin-film transistor, and more particularly, the present invention relates to a heating plate crystallization method by using a pulsed rapid thermal annealing process (PRTP) By means of the characteristic provided by the present invention, namely, the heating plate area has a better absorption rate to the infrared rays and has a high thermal stability. The heating plate area is used for absorbing the infrared rays, and after the heating, the energy is indirectly transferred to the amorphous layer via a thermal conduction method so that the amorphous layer will be rapidly crystallized to form the poly-silicon. Furthermore, the present invention uses the pulsed rapid thermal annealing process (PRTP) using the infrared rays to instantly heat, to selectively heat the materials by taking the advantage that different materials have different absorption rates to the infrared rays.
    Type: Application
    Filed: August 27, 2003
    Publication date: December 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Shun-Fa Huang, Chi-Lin Chen, Chiung-Wei Lin
  • Publication number: 20040180518
    Abstract: A method for forming a, single-crystal silicon layer on a transparent substrate. A transparent substrate having an amorphous silicon layer formed thereon and a silicon wafer having a hydrogen ion layer formed therein are provided. The silicon wafer is then reversed and laminated onto the amorphous silicon layer so that a layer of single-crystal silicon is between the hydrogen ion layer and the amorphous silicon layer. The laminated silicon wafer and the amorphous silicon layer are then subjected to laser or infrared light to cause chemical bonding of the single crystal silicon layer and the amorphous silicon layer and inducing a hydro-cracking reaction thereby separating the silicon wafer is and the transparent substrate at the hydrogen ion layer, and leaving the single-crystal silicon layer on the transparent substrate.
    Type: Application
    Filed: July 28, 2003
    Publication date: September 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu
  • Publication number: 20040178173
    Abstract: A method for laminating a material layer onto a transparent substrate. The method includes the steps of: providing a transparent substrate having an amorphous silicon layer formed thereon; forming an infrared absorbent metal layer on the material layer; inverting the material layer to laminate the metal layer onto the amorphous silicon layer; and exposing the metal layer and the amorphous silicon layer to infrared light to cause a metal silicide producing reaction and thus laminate the material layer and the transparent substrate.
    Type: Application
    Filed: June 10, 2003
    Publication date: September 16, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu