Patents by Inventor Shunichi MOTOMURA

Shunichi MOTOMURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240029992
    Abstract: Provided is a charged particle beam device capable of stably obtaining an effect of improving the depth of focus or the effect of correcting spherical aberration. The charged particle beam device includes an aperture having an annular slit or an electrode having an annular slit and is provided with means for adjusting the incident angle at which the charged particle beam is incident on the aperture or the electrode. Since the incident angle at which the charged particle beam is incident on the aperture or electrode having an annular slit can be made closer to perpendicular, the effect of improving the depth of focus or the effect of correcting spherical aberration can be stably obtained.
    Type: Application
    Filed: December 12, 2019
    Publication date: January 25, 2024
    Inventors: Shunichi MOTOMURA, Tsunenori NOMAGUCHI
  • Patent number: 11817289
    Abstract: As a device for correcting positive spherical aberration of an electromagnetic lens for a charged particle beam, a spherical aberration correction device combining a hole electrode and a ring electrode is known. In this spherical aberration correction device, when a voltage is applied between the hole electrode and the ring electrode, the focus of the charged particle beam device changes due to the convex lens effect generated in the hole electrode. Therefore, in a charged particle beam device including a charged particle beam source which generates a charged particle beam, a charged particle beam aperture having a ring shape, and a charged particle beam aperture power supply which applies a voltage to the charged particle beam aperture, the charged particle beam aperture power supply is configured to apply, to the charged particle beam aperture, a voltage having a polarity opposite to a polarity of charges of the charged particle beam.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: November 14, 2023
    Assignees: Hitachi High-Tech Corporation, Japan Fine Ceramics Center
    Inventors: Tsunenori Nomaguchi, Shunichi Motomura, Tadahiro Kawasaki, Takeharu Kato, Ryuji Yoshida
  • Patent number: 11798776
    Abstract: Provided is a charged particle beam apparatus capable of stably obtaining a spherical aberration correction effect. The charged particle beam apparatus includes: a charged particle beam aperture stop 121 and an electrode 122 that are arranged on an optical axis between the charged particle beam source 101 and the objective lens 105; and a power supply 108 that applies a voltage between the charged particle beam aperture stop 121 and the electrode 122, in which the voltage that is applied from the electrode to the charged particle beam aperture stop by the power supply is a voltage having a polarity opposite to a charge of the charged particle beam, the electrode 122 includes an annular aperture 205, and the charged particle beam aperture stop 121 includes a plurality of apertures 201 that are arranged at positions overlapping the annular aperture 205 of the electrode 122 when viewed in a direction Z along the optical axis.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 24, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Shunichi Motomura, Tsunenori Nomaguchi
  • Publication number: 20220246385
    Abstract: As a device for correcting positive spherical aberration of an electromagnetic lens for a charged particle beam, a spherical aberration correction device combining a hole electrode and a ring electrode is known. In this spherical aberration correction device, when a voltage is applied between the hole electrode and the ring electrode, the focus of the charged particle beam device changes due to the convex lens effect generated in the hole electrode. Therefore, in a charged particle beam device including a charged particle beam source which generates a charged particle beam, a charged particle beam aperture having a ring shape, and a charged particle beam aperture power supply which applies a voltage to the charged particle beam aperture, the charged particle beam aperture power supply is configured to apply, to the charged particle beam aperture, a voltage having a polarity opposite to a polarity of charges of the charged particle beam.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Tsunenori NOMAGUCHI, Shunichi MOTOMURA, Tadahiro KAWASAKI, Takeharu KATO, Ryuji YOSHIDA
  • Publication number: 20220238296
    Abstract: Provided is a charged particle beam apparatus capable of stably obtaining a spherical aberration correction effect. The charged particle beam apparatus includes: a charged particle beam aperture stop 121 and an electrode 122 that are arranged on an optical axis between the charged particle beam source 101 and the objective lens 105; and a power supply 108 that applies a voltage between the charged particle beam aperture stop 121 and the electrode 122, in which the voltage that is applied from the electrode to the charged particle beam aperture stop by the power supply is a voltage having a polarity opposite to a charge of the charged particle beam, the electrode 122 includes an annular aperture 205, and the charged particle beam aperture stop 121 includes a plurality of apertures 201 that are arranged at positions overlapping the annular aperture 205 of the electrode 122 when viewed in a direction Z along the optical axis.
    Type: Application
    Filed: May 15, 2019
    Publication date: July 28, 2022
    Inventors: Shunichi MOTOMURA, Tsunenori NOMAGUCHI
  • Patent number: 11335532
    Abstract: As a device for correcting positive spherical aberration of an electromagnetic lens for a charged particle beam, a spherical aberration correction device combining a hole electrode and a ring electrode is known. In this spherical aberration correction device, when a voltage is applied between the hole electrode and the ring electrode, the focus of the charged particle beam device changes due to the convex lens effect generated in the hole electrode. Therefore, in a charged particle beam device including a charged particle beam source which generates a charged particle beam, a charged particle beam aperture having a ring shape, and a charged particle beam aperture power supply which applies a voltage to the charged particle beam aperture, the charged particle beam aperture power supply is configured to apply, to the charged particle beam aperture, a voltage having a polarity opposite to a polarity of charges of the charged particle beam.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: May 17, 2022
    Assignees: Hitachi High-Tech Corporation, Japan Fine Ceramics Center
    Inventors: Tsunenori Nomaguchi, Shunichi Motomura, Tadahiro Kawasaki, Takeharu Kato, Ryuji Yoshida
  • Patent number: 11164716
    Abstract: When using a charged particle beam aperture having a ring shape in a charged particle beam device, the charged particle beam with the highest current density immediately above the optical axis, among the charged particle beams is blocked, so that it is difficult to dispose the charged particle beam aperture at the optimal mounting position. Therefore, in addition to the ring-shaped charged particle beam aperture, a hole-shaped charged particle beam aperture is provided, and it is possible to switch between the case where the ring-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam and the case where the hole-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 2, 2021
    Assignees: Hitachi High-Tech Corporation, Japan Fine Ceramics Center
    Inventors: Shunichi Motomura, Tsunenori Nomaguchi, Tadahiro Kawasaki, Takeharu Kato, Ryuji Yoshida
  • Patent number: 11107656
    Abstract: Signal electrons with high energy that pass near an optical axis, for example, backscattered electrons or secondary electrons in a booster optical system, can be detected. Therefore, there is provided a charged particle beam device including: a charged particle beam source configured to generate a charged particle beam; an objective lens configured to focus the charged particle beam to a sample; and a first charged particle detecting element disposed between the charged particle beam source and the objective lens and configured to detect charged particles generated by an interaction between the charged particle beam and the sample, in which a detection surface of the first charged particle detecting element is disposed on a center axis of the objective lens.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: August 31, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Tsunenori Nomaguchi, Shunichi Motomura, Kenichi Nishinaka, Toshihide Agemura
  • Publication number: 20210118641
    Abstract: As a device for correcting positive spherical aberration of an electromagnetic lens for a charged particle beam, a spherical aberration correction device combining a hole electrode and a ring electrode is known. In this spherical aberration correction device, when a voltage is applied between the hole electrode and the ring electrode, the focus of the charged particle beam device changes due to the convex lens effect generated in the hole electrode. Therefore, in a charged particle beam device including a charged particle beam source which generates a charged particle beam, a charged particle beam aperture having a ring shape, and a charged particle beam aperture power supply which applies a voltage to the charged particle beam aperture, the charged particle beam aperture power supply is configured to apply, to the charged particle beam aperture, a voltage having a polarity opposite to a polarity of charges of the charged particle beam.
    Type: Application
    Filed: March 29, 2018
    Publication date: April 22, 2021
    Inventors: Tsunenori NOMAGUCHI, Shunichi MOTOMURA, Tadahiro KAWASAKI, Takeharu KATO, Ryuji YOSHIDA
  • Publication number: 20210027977
    Abstract: When using a charged particle beam aperture having a ring shape in a charged particle beam device, the charged particle beam with the highest current density immediately above the optical axis, among the charged particle beams is blocked, so that it is difficult to dispose the charged particle beam aperture at the optimal mounting position. Therefore, in addition to the ring-shaped charged particle beam aperture, a hole-shaped charged particle beam aperture is provided, and it is possible to switch between the case where the ring-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam and the case where the hole-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam.
    Type: Application
    Filed: March 29, 2018
    Publication date: January 28, 2021
    Inventors: Shunichi MOTOMURA, Tsunenori NOMAGUCHI, Tadahiro KAWASAKI, Takeharu KATO, Ryuji YOSHIDA
  • Publication number: 20200211815
    Abstract: Signal electrons with high energy that pass near an optical axis, for example, backscattered electrons or secondary electrons in a booster optical system, can be detected. Therefore, there is provided a charged particle beam device including: a charged particle beam source configured to generate a charged particle beam; an objective lens configured to focus the charged particle beam to a sample; and a first charged particle detecting element disposed between the charged particle beam source and the objective lens and configured to detect charged particles generated by an interaction between the charged particle beam and the sample, in which a detection surface of the first charged particle detecting element is disposed on a center axis of the objective lens.
    Type: Application
    Filed: June 2, 2017
    Publication date: July 2, 2020
    Inventors: Tsunenori NOMAGUCHI, Shunichi MOTOMURA, Kenichi NISHINAKA, Toshihide AGEMURA