Patents by Inventor Shunji Iizuka

Shunji Iizuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8048237
    Abstract: An ultra soft high carbon hot-rolled steel sheet has excellent workability. The steel sheet is a high carbon hot-rolled steel sheet containing 0.2 to 0.7% C, and has a structure in which mean grain size of ferrite is 20 ?m or larger, the volume percentage of ferrite grains having 10 ?m or smaller size is 20% or less, mean diameter of carbide is in a range from 0.10 ?m to smaller than 2.0 ?m, the percentage of carbide grains having 5 or more of aspect ratio is 15% or less, and the contact ratio of carbide is 20% or less.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 1, 2011
    Assignee: JFE Steel Corporation
    Inventors: Hideyuki Kimura, Takeshi Fujita, Nobuyuki Nakamura, Naoya Aoki, Masato Sasaki, Satoshi Ueoka, Shunji Iizuka
  • Publication number: 20100282376
    Abstract: An ultra soft high carbon hot-rolled steel sheet has excellent workability. The steel sheet is a high carbon hot-rolled steel sheet containing 0.2 to 0.7% C, and has a structure in which mean grain size of ferrite is 20 ?m or larger, the volume percentage of ferrite grains having 10 ?m or smaller size is 20% or less, mean diameter of carbide is in a range from 0.10 ?m to smaller than 2.0 ?m, the percentage of carbide grains having 5 or more of aspect ratio is 15% or less, and the contact ratio of carbide is 20% or less.
    Type: Application
    Filed: February 26, 2007
    Publication date: November 11, 2010
    Applicant: JFE STEEL CORPORATION, A CORPORATION OF JAPAN
    Inventors: Hideyuki Kimura, Takeshi Fujita, Nobuyuki Nakamura, Naoya Aoki, Masato Sasaki, Satoshi Ueoka, Shunji Iizuka
  • Publication number: 20090260729
    Abstract: A high-carbon hot-rolled steel sheet with excellent width-direction homogeneity is provided. The steel sheet contains 0.2% to 0.7% carbon, 0.01% to 1.0% silicon, 0.1% to 1.0% manganese, 0.03% or less phosphorus, 0.035% or less sulfur, 0.08% or less aluminum, and 0.01% or less nitrogen, and the balance is iron and incidental impurities. The structure is such that the average ferrite grain size of edge parts of the steel sheet is less than 35 ?m, the average ferrite grain size of a part closer to the center of the steel sheet than the edge parts is less than 20 ?m, and the average carbide grain size is 0.10 ?m or more and less than 2.0 ?m. The steel sheet is produced by roughly rolling the steel, finish-rolling the steel at a finishing temperature of more than (Ar3+40° C.), cooling the steel at a cooling rate of more than 120° C./s within two seconds after the finish rolling to a cooling termination temperature of more than 550° C. and less than 650° C., coiling the steel at a temperature of 550° C.
    Type: Application
    Filed: August 6, 2007
    Publication date: October 22, 2009
    Inventors: Shunji Iizuka, Kazuhiro Seto, Akio Kobayashi, Kenichi MItsuzuka, Naoya Aoki, Hideyuki Kimura, Nobuyuki Nakamura
  • Publication number: 20050199322
    Abstract: The high carbon hot-rolled steel sheet contains, in terms of percentages of mass, 0.10 to 0.7% C, 2.0% or less Si, 0.20 to 2.0% Mn, 0.03% or less P, 0.03% or less S, 0.1% or less Sol.Al, 0.01% or less N, and the balance being Fe and inevitable impurities, and has a structure of ferrite having 6 ?m or less average grain size and carbide having 0.10 ?m or more and less than 1.2 ?m of average grain size. The volume ratio of the carbide having 2.0 ?m or more of grain size is 10% or less. The volume ratio of the ferrite containing no carbide is 5% or less. The manufacturing method thereof has the steps of hot-rolling, primary cooling, holding, coiling, acid washing, and annealing. The primary cooling step is to cool the hot-rolled steel sheet down to cooling termination temperatures ranging from 450° C. to 600° C. at cooling rates of higher than 120° C./sec. The holding step is to apply secondary cooling to hold the primarily cooled hot-rolled steel sheet at a temperature range from 450° C. to 650° C.
    Type: Application
    Filed: February 22, 2005
    Publication date: September 15, 2005
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Nakamura, Takeshi Fujita, Yoshiro Tsuchiya, Shunji Iizuka, Saiji Matsuoka
  • Patent number: 6139650
    Abstract: A non-oriented electromagnetic steel sheet contains 0.005 wt. % or less C, 0.2 wt. % or less P, 0.005 wt. % or less N, 4.5 wt. % or less Si, 0.05 to 1.5 wt. % Mn, 1.5 wt. % or less Al and 0.001 wt. % or less S, at least one element selected from the group of 0.001 to 0.05 wt. % Sb, 0.002 to 0.1 wt. % Sn, 0.0005 to 0.01 wt. % Se and 0.0005 to 0.01 wt. % Te; and the balance being Fe and inevitable impurities. The non-oriented electromagnetic steel sheet is produced by the steps of: hot-rolling a slab to form a hot-rolled steel sheet, cold-rolling the hot-rolled steel sheet to form a cold-rolled steel sheet; and finish annealing the cold-rolled steel sheet.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: October 31, 2000
    Assignee: NKK Corporation
    Inventors: Yoshihiko Oda, Nobuo Yamagami, Akira Hiura, Yasushi Tanaka, Noritaka Takahashi, Hideki Matsuoka, Atsushi Chino, Katsumi Yamada, Shunji Iizuka