Patents by Inventor Shunji Sakamoto

Shunji Sakamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9963767
    Abstract: An automotive member or a feed oil pipe includes: a member made of a ferritic stainless steel containing predetermined components containing 10.5% to 18.0% of Cr in mass %; a metal fitting made of an aluminized stainless steel sheet, the metal fitting being attached to the member; and a gap structure defined between the member and the metal fitting, the gap structure being exposed to a chloride environment, where the metal fitting has an Al-plating weight per unit area of 20 g/m2 or more and 150 g/m2 or less on a surface corresponding to a gap of the gap structure, and surfaces of the metal fitting and the non-aluminized member other than the gap are coated with a cation electrodeposition coating film having a thickness of 5 ?m to 35 ?m.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: May 8, 2018
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Hiroshi Urashima, Shunji Sakamoto, Shinichi Teraoka, Toshio Tanoue
  • Patent number: 9611525
    Abstract: An aspect of a ferritic stainless steel contains, by mass %: C: 0.03% or less; N: 0.03% or less; Si: more than 0.1% to 1% or less; Mn: 0.02% to 1.2%; Cr: 15% to 23%; Al: 0.002% to 0.5%; and either one or both of Nb and Ti, with the remainder being Fe and unavoidable impurities, wherein Expression (1) and Expression (2) illustrated below are satisfied, an oxide film is formed on a surface thereof, and the oxide film contains Cr, Si, Nb, Ti and Al in a total cationic fraction of 30% or more, 8(C+N)+0.03?Nb+Ti?0.6??(1) Si+Cr+Al+{Nb+Ti?8(C+N)}?15.5??(2).
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 4, 2017
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Nobuhiko Hiraide, Fumio Fudanoki, Shunji Sakamoto
  • Publication number: 20160230261
    Abstract: An automotive member or a feed oil pipe includes: a member made of a ferritic stainless steel containing predetermined components containing 10.5% to 18.0% of Cr in mass %; a metal fitting made of an aluminized stainless steel sheet, the metal fitting being attached to the member; and a gap structure defined between the member and the metal fitting, the gap structure being exposed to a chloride environment, where the metal fitting has an Al-plating weight per unit area of 20 g/m2 or more and 150 g/m2 or less on a surface corresponding to a gap of the gap structure, and surfaces of the metal fitting and the non-aluminized member other than the gap are coated with a cation electrodeposition coating film having a thickness of 5 ?m to 35 ?m.
    Type: Application
    Filed: September 12, 2014
    Publication date: August 11, 2016
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Hiroshi URASHIMA, Shunji SAKAMOTO, Shinichi TERAOKA, Toshio TANOUE
  • Patent number: 9249901
    Abstract: A fuel pipe which is inexpensive and is excellent in salt spray corrosion resistance, characterized by being comprised of a steel pipe member having as a material a ferritic stainless steel which contains, by mass %, C: 0.015% or less, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P: 0.050% or less, S: 0.010% or less, N: 0.015% or less, Al: 0.010 to 0.100%, and Cr: 13.0 to 18.0% and further, one or both of Ti: 0.03 to 0.30% and Nb: 0.03 to 0.30% and a metal fitting part, the metal fitting part and the steel pipe member having between them a crevice structure at the surface which the structure is exposed to a salt spray environment, an opening amount at a crevice part of the crevice structure being 0.2 mm or more, and an inside of the crevice part being coated by electrodeposition.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 2, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shunji Sakamoto, Toshio Tanoue
  • Patent number: 9238855
    Abstract: This ferritic stainless steel for components of an automobile exhaust system includes, in terms of percent by mass: C: ?0.015%; Si: 0.01% to 0.50%; Mn: 0.01% to 0.50%; P: ?0.050%; S: ?0.010%; N: ?0.015%; Al: 0.010% to 0.100%; Cr: 16.5% to 22.5%; Ni: 0.5% to 2.0%; and Sn: 0.01% to 0.50%, and further includes either one or both of Ti: 0.03% to 0.30% and Nb: 0.03% to 0.30%, with a remainder being Fe and inevitable impurities.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 19, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shunji Sakamoto, Shinichi Teraoka, Nobuhiko Hiraide
  • Patent number: 9074271
    Abstract: High strength dual-phase stainless steel sheet and steel strip which are excellent in corrosion resistance, the dual-phase stainless steel sheet and steel strip having a Vicker's hardness of 200HV or more and comprising, by mass %, C: 0.02 to 0.20%, Si: 0.10 to 2.0%, Mn: 0.20 to 2.0%, P: 0.040% or less, S: 0.010% or less, Cr: 15.0 to 18.0%, Ni: 0.5 to 4.0%, Sn: 0.05 to 0.50, N: 0.010 to 0.10%, and a balance of Fe and unavoidable impurities. The dual-phase stainless steel sheet and steel strip have a ?p range of 60 to 95, and a ferrite and martensite dual-phase microstructure formed by being heated to the ferrite and austenite dual-phase region, then the austenite phase transforming to martenite in the subsequent cooling process, wherein ?p=420C+470N+23Ni+7Mn+9Cu?11.5Cr?11.5Si?12Mo?7Sn?49Ti?47Nb?52Al+189.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: July 7, 2015
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Shunji Sakamoto
  • Patent number: 8900380
    Abstract: The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Shinichi Teraoka, Shunji Sakamoto, Masuhiro Fukaya
  • Patent number: 8758893
    Abstract: The present invention provides enamelware and a glaze improving the bondability between the steel substrate and enamel layer and superior in resistance to dew point corrosion by sulfuric acid and hydrochloric acid, that is, a steel substrate of a composition containing, by mass %, Cu: 0.05 to 0.5%, Si: 0.1 to 2.0%, Mn: 0.05 to 2.0%, P: 0.005 to 0.10%, and S: 0.005 to 0.1%, restricting C to C: 0.20% or less, and comprising a balance of Fe and unavoidable impurities on the surface of which an enamel layer of a thickness of 50 to 700 ?m is provided. At that time, the content of Co oxides in the enamel layer is made, converted to Co, 0.01 to 10% and/or the content of Ni oxides is made, converted to Ni, 0.05 to 20% or the total content of Ni in the steel substrate and enamel layer is made 0.005 to 4.5% with respect to the total mass of the enamelware and/or the total content of Co is made 0.008 to 4.0% with respect to the total mass of the enamelware.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: June 24, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Satoshi Nishimura, Shunji Sakamoto, Hidekuni Murakami
  • Publication number: 20140069619
    Abstract: An aspect of a ferritic stainless steel contains, by mass %: C: 0.03% or less; N: 0.03% or less; Si: more than 0.1% to 1% or less; Mn: 0.02% to 1.2%; Cr: 15% to 23%; Al: 0.002% to 0.5%; and either one or both of Nb and Ti, with the remainder being Fe and unavoidable impurities, wherein Expression (1) and Expression (2) illustrated below are satisfied, an oxide film is formed on a surface thereof, and the oxide film contains Cr, Si, Nb, Ti and Al in a total cationic fraction of 30% or more, 8(C+N)+0.03?Nb+Ti?0.6??(1) Si+Cr+Al+{Nb+Ti?8(C+N)}?15.5??(2).
    Type: Application
    Filed: March 28, 2012
    Publication date: March 13, 2014
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Nobuhiko Hiraide, Fumio Fudanoki, Shunji Sakamoto
  • Publication number: 20130074971
    Abstract: A fuel pipe which is inexpensive and is excellent in salt spray corrosion resistance, characterized by being comprised of a steel pipe member having as a material a ferritic stainless steel which contains, by mass %, C: 0.015% or less, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P: 0.050% or less, S: 0.010% or less, N: 0.015% or less, Al: 0.010 to 0.100%, and Cr: 13.0 to 18.0% and further, one or both of Ti: 0.03 to 0.30% and Nb: 0.03 to 0.30% and a metal fitting part, the metal fitting part and the steel pipe member having between them a crevice structure at the surface which the structure is exposed to a salt spray environment, an opening amount at a crevice part of the crevice structure being 0.2 mm or more, and an inside of the crevice part being coated by electrodeposition.
    Type: Application
    Filed: June 3, 2011
    Publication date: March 28, 2013
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shunji Sakamoto, Toshio Tanoue
  • Patent number: 8361245
    Abstract: The present invention provides a steel material able to secure a superior corrosion resistance in a sulfuric acid dew point corrosive environment of exhaust gas obtained by burning high S-containing fuel, containing, by mass %, C: ?0.010%, Si: ?0.10%, Cu: 0.05 to 1.00%, P: ?0.030%, S: ?0.050%, and Al: ?0.10% and comprising a balance of Fe and unavoidable impurities. Further, this steel contains one type or two types or more of Sb, Sn, Cr, Mn, Mo, Ni, Nb, V, Ti, and B.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: January 29, 2013
    Assignee: Nippon Steel Corporation
    Inventors: Shunji Sakamoto, Satoshi Nishimura, Akira Usami
  • Publication number: 20130014864
    Abstract: High strength dual-phase structure stainless steel sheet and steel strip which are excellent in corrosion resistance, the dual-phase structure stainless steel sheet and steel strip having a Vicker's hardness of 200 HV or more and characterized by containing, by mass %, C: 0.02 to 0.20%, Si: 0.10 to 2.0%, Mn: 0.20 to 2.0%, P: 0.040% or less, S: 0.010% or less, Cr: 15.0 to 18.0%, Ni: 0.5 to 4.0%, Sn: 0.05 to 0.50, and N: 0.010 to 0.10%, having a ?p of 60 to 95 in range, having a balance of substantially Fe, and having a ferrite and martensite dual-phase structure formed by being heated to the ferrite and austenite dual-phase region, then the austenite phase transforming to martenite in the subsequent cooling process, where ?p=420C+470N+23Ni+7Mn+9Cu?11.5Cr?11.5Si?12Mo?7Sn?49Ti?47Nb?52Al+189.
    Type: Application
    Filed: March 29, 2011
    Publication date: January 17, 2013
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Shunji Sakamoto
  • Publication number: 20130004361
    Abstract: This ferritic stainless steel for components of an automobile exhaust system includes, in terms of percent by mass: C: ?0.015%; Si: 0.01% to 0.50%; Mn: 0.01% to 0.50%; P: ?0.050%; S: ?0.010%; N: ?0.015%; Al: 0.010% to 0.100%; Cr: 16.5% to 22.5%; Ni: 0.5% to 2.0%; and Sn: 0.01% to 0.50%, and further includes either one or both of Ti: 0.03% to 0.30% and Nb: 0.03% to 0.30%, with a remainder being Fe and inevitable impurities.
    Type: Application
    Filed: March 9, 2011
    Publication date: January 3, 2013
    Inventors: Shunji Sakamoto, Shinichi Teraoka, Nobuhiko Hiraide
  • Publication number: 20120328466
    Abstract: The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.
    Type: Application
    Filed: February 21, 2011
    Publication date: December 27, 2012
    Inventors: Shinichi Teraoka, Shunji Sakamoto, Masuhiro Fukaya
  • Patent number: 7883663
    Abstract: The present invention provides optimal low chromium stainless steel preventing the deterioration in corrosion resistance at the weld zone in the case of multipass welding, superior in grain boundary corrosion resistance of the weld zone even in a harsh corrosive environment, simultaneously free from preferential corrosion at the heat affected zones near weld fusion lines, and further superior in manufacturability, that is, low chromium stainless steel containing, by mass %, C: 0.03% or less, N: 0.004 to 0.02%, Si: 0.2 to 1%, Mn: over 1.5 to 2.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 15%, Ni: 0.2 to 3.0%, and Al: 0.005 to 0.1%, further containing Ti: 4×(C %+N %) to 0.35%, and having a balance of Fe and unavoidable impurities, having a ?p(%) expressed by a predetermined formula satisfying 80 or more, and satisfying Ti %×N %<0.004 as well.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: February 8, 2011
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Masuhiro Fukaya, Akihiko Takahashi, Shinichi Teraoka, Shunji Sakamoto
  • Patent number: 7731896
    Abstract: The present invention provides a low alloy steel and a weld joint thereof excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance, said low alloy steel containing, in mass, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, Cu: 0.1 to 1%, Mo: 0.001 to 1%, Sb: 0.01 to 0.2%, P: 0.05% or less, and S: 0.05% or less, with the balance consisting of Fe and unavoidable impurities; and the acid corrosion resistance index AI of said low alloy steel being zero or positive. Here, said AI is given by the following expression, AI/10,000=0.0005+0.045×Sb %?C %×Mo %, where % means mass %.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: June 8, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Akira Usami, Shunji Sakamoto, Satoshi Nishimura, Motohiro Okushima, Takashi Kusunoki
  • Patent number: 7718014
    Abstract: The present invention provides a low alloy steel and a weld joint thereof excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance, said low alloy steel containing, in mass, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, Cu: 0.1 to 1%, Mo: 0.001 to 1%, Sb: 0.01 to 0.2%, P: 0.05% or less, and S: 0.05% or less, with the balance consisting of Fe and unavoidable impurities; and the acid corrosion resistance index AI of said low alloy steel being zero or positive. Here, said AI is given by the following expression, AI/10,000=0.0005+0.045×Sb %?C %×Mo %, where % means mass %.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: May 18, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Akira Usami, Shunji Sakamoto, Satoshi Nishimura, Motohiro Okushima, Takashi Kusunoki
  • Publication number: 20090274929
    Abstract: The present invention provides a surface treated stainless steel sheet for an automobile fuel tank excellent in corrosion resistance under a salt corrosive environment, that is, a surface treated stainless steel sheet for an automobile fuel tank excellent in corrosion resistance under a salt corrosive environment characterized by comprising a ferritic stainless steel sheet base material containing, by mass %, Cr: 10.0 to 25.0%, having an average r value of 1.4 or more, and having a total elongation of 30% or more or an austenitic stainless steel sheet base material containing Cr: 10.0 to 25.0%, having a total elongation of 45% or more, and having a work hardening rate of 400 N/mm2 on the surface of which is formed a plating layer containing 5 to 13% of Si and having a balance of unavoidable impurities and Al by a weight of 5 g/m2 to 80 g/m2, between the plating layer and base iron is formed an alloy layer having a thickness of less than 5.
    Type: Application
    Filed: January 5, 2007
    Publication date: November 5, 2009
    Inventors: Shunji Sakamoto, Toshio Tanoue, Naoto Ono, Takao Kanai
  • Publication number: 20090098009
    Abstract: The present invention provides optimal low chromium stainless steel preventing the deterioration in corrosion resistance at the weld zone in the case of multipass welding, superior in grain boundary corrosion resistance of the weld zone even in a harsh corrosive environment, simultaneously free from preferential corrosion at the heat affected zones near weld fusion lines, and further superior in manufacturability, that is, low chromium stainless steel containing, by mass %, C: 0.03% or less, N: 0.004 to 0.02%, Si: 0.2 to 1%, Mn: over 1.5 to 2.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 15%, Ni: 0.2 to 3.0%, and Al: 0.005 to 0.1%, further containing Ti: 4×(C %+N %) to 0.35%, and having a balance of Fe and unavoidable impurities, having a ?p(%) expressed by a predetermined formula satisfying 80 or more, and satisfying Ti %×N %<0.004 as well.
    Type: Application
    Filed: July 3, 2007
    Publication date: April 16, 2009
    Inventors: Masuhiro Fukaya, Akihiko Takahashi, Shinichi Teraoka, Shunji Sakamoto
  • Publication number: 20090053551
    Abstract: The present invention provides surface treated stainless steel sheet for an automobile fuel tank or for a fuel pipe with excellent corrosion resistance and weld zone reliability in a salt environment and a surface treated stainless steel welded pipe for an automobile fuel inlet pipe, characterized by comprising a stainless steel sheet substrate having a predetermined composition of ingredients on the surface of which is provided a corrosion-proofing plating layer comprising Sn and unavoidable impurities and having a weight of 10 g/m2 to 200 g/m2 or a corrosion-proofing plating layer comprising Sn and Zn: 0.8 to 10.0 mass % and unavoidable impurities and having a weight of 10 g/m2 to 200 g/m2.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 26, 2009
    Inventors: Shunji Sakamoto, Yasuto Gotoh, Masao Kurosaki, Toshinori Mizuguchi, Naoto Ono