Patents by Inventor Shunpei Yamazaki
Shunpei Yamazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20110157216Abstract: To provide a liquid crystal display device which can perform image display in both modes: a reflective mode where external light is used as an illumination light source; and a transmissive mode where a backlight is used. In one pixel, a region where incident light through a liquid crystal layer is reflected to perform display (reflective region) and a region through which light from the backlight passes to perform display (transmissive region) are provided, and image display can be performed in both modes: the reflective mode where external light is used as an illumination light source; and the transmissive mode where the backlight is used as an illumination light source. In addition, two transistors connected to respective pixel electrode layers are provided in one pixel, and the two transistors are separately operated, whereby display of the reflective region and display of the transmissive region can be controlled independently.Type: ApplicationFiled: December 27, 2010Publication date: June 30, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei Yamazaki, Jun Koyama, Yoshiharu Hirakata
-
Patent number: 7968461Abstract: It is required that a line width of a wiring is prevented from being wider to be miniaturized when the wiring or the like is formed by a dropping method typified by an ink-jetting method. Therefore, the invention provides a method for narrowing (miniaturizing) the line width according to a method different from a conventional method. A region to be liquid-repellent is formed and further, a region to be lyophilic is formed selectively in the region to be liquid-repellent in a surface for forming a pattern, before forming a desired pattern. After that, a pattern for a wiring or the like is formed in the lyophilic region by a dropping method typified by an ink-jetting method for dropping a composition including a conductive material for the wiring or the like.Type: GrantFiled: October 25, 2004Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shinji Maekawa, Shunpei Yamazaki, Yuko Tachimura, Koji Muranaka
-
Patent number: 7968890Abstract: By providing appropriate TFT structures arranged in various circuits of the semiconductor device in response to the functions required by the circuits, it is made possible to improve the operating performances and the reliability of a semiconductor device, reduce power consumption as well as realizing reduced manufacturing cost and increase in yield by lessening the number of processing steps. An LDD region of a TFT is formed to have a concentration gradient of an impurity element for controlling conductivity which becomes higher as the distance from a drain region decreases. In order to form such an LDD region having a concentration gradient of an impurity element, the present invention uses a method in which a gate electrode having a taper portion is provided to thereby dope an ionized impurity element for controlling conductivity accelerated in the electric field so that it penetrates through the gate electrode and a gate insulating film into a semiconductor layer.Type: GrantFiled: January 22, 2008Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hideomi Suzawa, Koji Ono, Yasuyuki Arai
-
Patent number: 7968879Abstract: One object of the present invention is reduction of off current of a thin film transistor. Another object of the present invention is improvement of electric characteristics of the thin film transistor. Further, another object of the present invention is improvement of image quality of the display device including the thin film transistor. The thin film transistor includes a semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at. % or a conductive film which is provided over a gate electrode with the gate insulating film interposed therebetween and which is provided in an inner region of the gate electrode so as not to overlap with an end portion of the gate electrode, a film covering at least a side surface of the semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at.Type: GrantFiled: December 24, 2008Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Shunpei Yamazaki
-
Patent number: 7968884Abstract: A semiconductor device manufactured utilizing an SOI substrate, in which defects due to an end portion of an island-shaped silicon layer are prevented and the reliability is improved, and a manufacturing method thereof. The following are included: an SOI substrate in which an insulating layer and an island-shaped silicon layer are stacked in order over a support substrate; a gate insulating layer provided over one surface and a side surface of the island-shaped silicon layer; and a gate electrode which is provided over the island-shaped silicon layer with the gate insulating layer interposed therebetween. The gate insulating layer is formed such that the dielectric constant in the region which is in contact with the side surface of the island-shaped silicon layer is lower than that over the one surface of the island-shaped silicon layer.Type: GrantFiled: November 27, 2007Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Kazuko Ikeda, Shinya Sasagawa, Hideomi Suzawa
-
Patent number: 7968885Abstract: To provide a display device having a thin film transistor with high electric characteristics and excellent reliability and a manufacturing method thereof. A gate electrode, a gate insulating film provided over the gate electrode, a first semiconductor layer provided over the gate insulating film and having a microcrystalline semiconductor, a second semiconductor layer provided over the first semiconductor layer and having an amorphous semiconductor, and a source region and a drain region provided over the second semiconductor layer are provided. The first semiconductor layer has high crystallinity than the second semiconductor layer. The second semiconductor layer includes an impurity region having a conductivity type different from a conductivity type of the source region and the drain region between the source region and the drain region.Type: GrantFiled: August 6, 2008Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoshi Kobayashi, Yoshiyuki Kurokawa, Shunpei Yamazaki, Daisuke Kawae
-
Patent number: 7968386Abstract: Application form of and demand for an IC chip formed with a silicon wafer are expected to increase, and further reduction in cost is required. An object of the invention is to provide a structure of an IC chip and a process capable of producing at a lower cost. In view of the above described object, one feature of the invention is to provide the steps of forming a separation layer over an insulating substrate and forming a thin film integrated circuit having a semiconductor film as an active region over the separation layer, wherein the thin film integrated circuit is not separated. There is less limitation on the shape of a mother substrate in the case of using the insulating substrate, when compared with the case of taking a chip out of a circular silicon wafer. Accordingly, reduction in cost of an IC chip can be achieved.Type: GrantFiled: November 6, 2009Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Koji Dairiki
-
Publication number: 20110147737Abstract: A first transistor including a channel formation region, a first gate insulating layer, a first gate electrode, and a first source electrode and a first drain electrode; a second transistor including an oxide semiconductor layer, a second source electrode and a second drain electrode, a second gate insulating layer, and a second gate electrode; and a capacitor including one of the second source electrode and the second drain electrode, the second gate insulating layer, and an electrode provided to overlap with one of the second source electrode and the second drain electrode over the second gate insulating layer are provided. The first gate electrode and one of the second source electrode and the second drain electrode are electrically connected to each other.Type: ApplicationFiled: December 13, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato
-
Publication number: 20110148208Abstract: In order to increase the continuous operating time of a display device driven by a battery or the like, and a portable information terminal using the same, the volume and weight of the battery are increased. Thus, there arises a trade-off between the increased capacity of the battery and the portability of the device/terminal. Therefore, the invention provides a display device with portability ensured, which is capable of operating continuously for long periods and a portable information terminal using the same. In the display device, TFTs and an RFID tag are formed over the same insulating substrate. The RFID tag detects signals from a reader/writer, and generates DC power based on the signals. While the RFID tag is detecting signals, the display device is driven by the DC power generated in the RFID tag.Type: ApplicationFiled: February 28, 2011Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Yoshifumi TANADA, Shunpei YAMAZAKI
-
Publication number: 20110147752Abstract: A means of forming unevenness for preventing specular reflection of a pixel electrode, without increasing the number of process steps, is provided. In a method of manufacturing a reflecting type liquid crystal display device, the formation of unevenness (having a radius of curvature r in a convex portion) in the surface of a pixel electrode is performed by the same photomask as that used for forming a channel etch type TFT, in which the convex portion is formed in order to provide unevenness to the surface of the pixel electrode and give light scattering characteristics.Type: ApplicationFiled: March 1, 2011Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Shunpei YAMAZAKI
-
Publication number: 20110147750Abstract: A resin material having a small relative dielectric constant is used as a layer insulation film 114. The resin material has a flat surface. A black matrix or masking film for thin film transistors is formed thereon using a metal material. Such a configuration prevents the problem of a capacity generated between the masking film and a thin film transistor.Type: ApplicationFiled: December 17, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Shunpei YAMAZAKI
-
Publication number: 20110149185Abstract: To reduce power consumption and suppress display degradation of a liquid crystal display device. To suppress display degradation due to an external factor such as temperature. A transistor whose channel formation region is formed using an oxide semiconductor layer is used for a transistor provided in each pixel. Note that with the use of a high-purity oxide semiconductor layer, off-state current of the transistor at a room temperature can be 10 aA/?m or less and off-state current at 85° C. can be 100 aA/?m or less. Consequently, power consumption of a liquid crystal display device can be reduced and display degradation can be suppressed. Further, as described above, off-state current of the transistor at a temperature as high as 85° C. can be 100 aA/?m or less. Thus, display degradation of a liquid crystal display device due to an external factor such as temperature can be suppressed.Type: ApplicationFiled: December 15, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Shunpei Yamazaki
-
Publication number: 20110151618Abstract: An oxide semiconductor layer with excellent crystallinity is formed to enable manufacture of transistors with excellent electrical characteristics for practical application of a large display device, a high-performance semiconductor device, etc. By first heat treatment, a first oxide semiconductor layer is crystallized. A second oxide semiconductor layer is formed over the first oxide semiconductor layer. By second heat treatment, an oxide semiconductor layer including a crystal region having the c-axis oriented substantially perpendicular to a surface is efficiently formed and oxygen vacancies are efficiently filled. An oxide insulating layer is formed over and in contact with the oxide semiconductor layer. By third heat treatment, oxygen is supplied again to the oxide semiconductor layer. A nitride insulating layer containing hydrogen is formed over the oxide insulating layer.Type: ApplicationFiled: December 15, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei YAMAZAKI, Hotaka MARUYAMA, Yoshiaki OIKAWA, Katsuaki TOCHIBAYASHI
-
Publication number: 20110148835Abstract: An object is to provide a display device with low power consumption and good display quality. A first substrate is provided with a terminal portion, a pixel electrode, a switching transistor including an oxide semiconductor, a first optical sensor having high optical sensitivity to visible light, and a second optical sensor having optical sensitivity to infrared light and having lower optical sensitivity to visible light than the first optical sensor. The illuminance or color temperature around a display device is detected using the first and second optical sensors, and the luminance or color tone of a display image is adjusted. A second substrate is provided so as to face the first substrate, and is provided with a counter electrode. In a period for displaying a still image, the switching transistor is turned off so that the counter electrode is brought into a floating state.Type: ApplicationFiled: December 9, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Shunpei Yamazaki
-
Publication number: 20110147738Abstract: A transistor including an oxide semiconductor, which has good on-state characteristics, and a high-performance semiconductor device including a transistor capable of high-speed response and high-speed operation. In the transistor including an oxide semiconductor, oxygen-defect-inducing factors are introduced (added) into an oxide semiconductor layer, whereby the resistance of a source and drain regions are selectively reduced. Oxygen-defect-inducing factors are introduced into the oxide semiconductor layer, whereby oxygen defects serving as donors can be effectively formed in the oxide semiconductor layer. The introduced oxygen-defect-inducing factors are one or more selected from titanium, tungsten, and molybdenum, and are introduced by an ion implantation method.Type: ApplicationFiled: December 15, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA
-
Publication number: 20110147739Abstract: A larger substrate can be used, and a transistor having a desirably high field-effect mobility can be manufactured through formation of an oxide semiconductor layer having a high degree of crystallinity, whereby a large-sized display device, a high-performance semiconductor device, or the like can be put into practical use. A single-component oxide semiconductor layer is formed over a substrate; then, crystal growth is carried out from a surface to an inside by performing heat treatment at 500° C. to 1000° C. inclusive, preferably 550° C. to 750° C. inclusive so that a single-component oxide semiconductor layer including single crystal regions is formed; and a multi-component oxide semiconductor layer including single crystal regions is stacked over the single-component oxide semiconductor layer including single crystal regions.Type: ApplicationFiled: December 15, 2010Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei YAMAZAKI, Takuya HIROHASHI, Masahiro TAKAHASHI, Takashi SHIMAZU
-
Publication number: 20110151603Abstract: A light-emitting apparatus of the present invention includes: a first electrode formed on an insulating surface; a first insulating layer covering an end portion of the first electrode and having a tapered edge; a second insulating layer formed on the first electrode and the first insulating layer and formed of one kind or a plurality of kinds selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride; an organic compound layer formed on the second insulating layer; and a second electrode formed on the organic compound layer.Type: ApplicationFiled: February 24, 2011Publication date: June 23, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Masayuki Sakakura, Shunpei Yamazaki
-
Patent number: 7964879Abstract: According to the present invention, a material having a light-shielding property is used for a bank layer surrounding the edge of a light-emitting element. Accordingly, light which is not reflected by an object to be read out can be prevented from entering an image pick-up element, and information on the object to be read out can be correctly read out. The display device mounted with a read function according to the present invention includes a thin film transistor and an image pick-up element over a substrate having an insulating surface, an insulating layer covering a thin film transistor and an image pick-up element, a light-emitting element provided over the insulating layer, and a bank layer having a light-shielding property surrounding the edge of the light-emitting element. The bank layer has an opening portion in a position overlapping with the image pick-up element.Type: GrantFiled: January 24, 2008Date of Patent: June 21, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Shunpei Yamazaki
-
Patent number: 7964452Abstract: As a substrate gets larger, time of manufacture is increased due to the repetition of film formations and etchings; waste disposal costs of etchant and the like are increased; and material efficiency is significantly reduced. A base film for improving adhesion between a substrate and a material layer formed by a droplet discharge method is formed in the invention. Further, a manufacturing method of a liquid crystal display device according to the invention includes at least one step for forming the following patterns required for manufacturing a liquid crystal display device without using a photomask: a pattern of a material layer typified by a wiring (or an electrode) pattern, an insulating layer pattern; or a mask pattern for forming another pattern.Type: GrantFiled: August 17, 2010Date of Patent: June 21, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Shinji Maekawa, Gen Fujii, Hideaki Kuwabara
-
Patent number: 7964874Abstract: A semiconductor display device with an interlayer insulating film in which surface levelness is ensured with a limited film formation time, heat treatment for removing moisture does not take long, and moisture in the interlayer insulating film is prevented from escaping into a film or electrode adjacent to the interlayer insulating film. A TFT is formed and then a nitrogen-containing inorganic insulating film that transmits less moisture compared to organic resin film is formed so as to cover the TFT. Next, organic resin including photosensitive acrylic resin is applied and an opening is formed by partially exposing the organic resin film to light. The organic resin film where the opening is formed, is then covered with a nitrogen-containing inorganic insulating film which transmits less moisture than organic resin film does.Type: GrantFiled: May 19, 2008Date of Patent: June 21, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Satoshi Murakami, Masahiko Hayakawa, Kiyoshi Kato, Mitsuaki Osame, Takashi Hirosue, Saishi Fujikawa