Patents by Inventor Shunsuke KUROSAWA

Shunsuke KUROSAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939504
    Abstract: The present invention aims to provide a scintillator which has a short fluorescence decay time, whose fluorescence intensity after a period of time following radiation irradiation is low, and which shows largely improved light-transmittance. A scintillator represented by the following General Formula (1), the scintillator including Zr, having a Zr content of not less than 1500 ppm by mass therein, and being a block of a sintered body. QxMyO3z:A . . . (1) (wherein in General Formula (1), Q includes at least one or more kinds of divalent metallic elements; M includes at least Hf; and x, y, and z independently satisfy 0.5?x?1.5, 0.5?y?1.5, and 0.7?z?1.5, respectively).
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: March 26, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Koji Hazu, Kentaro Horibe, Tetsuya Kawano, Keiji Yamahara, Shunsuke Kurosawa, Akira Yoshikawa
  • Publication number: 20240019592
    Abstract: A scintillator, having a composition represented by the following general formula (1), including a substitution element A, the substitution element A comprising at least La, and a total molar content of the substitution element A being 0.00001 mol or more and 0.05 mol or less in 1 mol of the scintillator, and further including an activator element B, the activator element B being constituted from Ce, having a perovskite-type crystal structure, and exhibiting a linear transmittance of light at a wavelength of 800 nm, at a thickness of 1.9 mm, of 30% or more. QMxO3y . . . (1): wherein Q represents one or more elements selected from the group consisting of Ca, Sr and Ba; M represents Hf; Q and M are each optionally substituted with other element at a proportion of 20% by mol or less; and x and y respectively satisfy 0.5?x?1.5 and 0.7?y?1.5.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 18, 2024
    Applicants: Mitsubishi Chemical Corporation, TOHOKU UNIVERSITY
    Inventors: Koji Hazu, Keiji Yamahara, Shunsuke Kurosawa, Akira Yoshikawa
  • Publication number: 20230218249
    Abstract: The signal processing system generates image data, based on an electric signal group output from a radiation detector, and recognizes the electric signal group as a processing target, and the electric signal group includes at least part of an electric signal group meeting the following requirements: the electric signal group is an electric signal group with a signal value within a predetermined range, the electric signal group corresponding to a gamma ray with energy equal to or less than 375 keV; the predetermined range is equal to or greater than 50% and equal to or less than 80% relative to a 100% signal value; and the 100% signal value is a signal value detected when a gamma ray with energy of 511 keV enters a radiation detection element in the radiation detector and is totally absorbed by the radiation detection element.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Applicants: Mitsubishi Chemical Corporation, Tohoku University
    Inventors: Koji Hazu, Kentaro Horibe, Keiji Yamahara, Shunsuke Kurosawa, Akira Yoshikawa
  • Publication number: 20220326400
    Abstract: The present invention aims to provide a scintillator which has a short fluorescence decay time, whose fluorescence intensity after a period of time following radiation irradiation is low, and which shows largely improved light-transmittance. A scintillator represented by the following General Formula (1), the scintillator including Zr, having a Zr content of not less than 1500 ppm by mass therein, and being a block of a sintered body. QxMyO3z:A . . . (1) (wherein in General Formula (1), Q includes at least one or more kinds of divalent metallic elements; M includes at least Hf; and x, y, and z independently satisfy 0.5?x?1.5, 0.5?y?1.5, and 0.7?z?1.5, respectively).
    Type: Application
    Filed: June 23, 2022
    Publication date: October 13, 2022
    Applicants: Mitsubishi Chemical Corporation, Tohoku University
    Inventors: Koji Hazu, Kentaro Horibe, Tetsuya Kawano, Keiji Yamahara, Shunsuke Kurosawa, Akira Yoshikawa
  • Patent number: 11158784
    Abstract: The present invention makes clear and defines a congruent composition of a langasite-based oxide, and establishes a method of manufacturing a crystal by any desired composition of AE3ME1+a(Ga1?xAlx)3+bSi2+cO14 (AE is an alkaline-earth metal, ME is Nb or Ta, 0?x?1, ?0.5<a?0 or 0<a<0.5, ?0.5<b?0 or 0<b?0.5, and ?0.5<c?0 or 0<c<0.5, excluding a=b=c=0). This makes it possible to suppress the formation of an impurity, and improve the yield and crystal manufacturing rate. The raw material is a raw material mixture prepared by mixing an alkaline-earth metal or its carbonate or oxide, Nb or Ta or its oxide, Ga or its oxide, Al or its oxide, and Si or its oxide.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: October 26, 2021
    Assignees: PIEZO STUDIO INC., TOHOKU UNIVERSITY
    Inventors: Akira Yoshikawa, Yuui Yokota, Yuji Ohashi, Kei Kamada, Tetsuo Kudo, Kenji Inoue, Yasuhiro Shoji, Yu Igarashi, Mototaka Arakawa, Shunsuke Kurosawa, Akihiro Yamaji
  • Publication number: 20210277504
    Abstract: A metal member according to this invention is composed of polycrystals of a metal made of ruthenium or an alloy containing ruthenium at a maximum ratio. The aspect ratio of a crystal grain of the polycrystalline metal member is 1.5 or more. A plurality of crystal grains forming the metal member are arranged with their major axes being pointed in the same direction, and the number of crystal grains in a section in the major axis direction of the crystal grains is 120 or less per 1 mm2.
    Type: Application
    Filed: June 27, 2018
    Publication date: September 9, 2021
    Inventors: Akira YOSHIKAWA, Rikito MURAKAMI, Yui YOKOTA, Takayuki NIHEI, Kei KAMADA, Yasuhiro SHOJI, Shunsuke KUROSAWA, Akihiro YAMAJI, Yuji OHASHI
  • Patent number: 10771032
    Abstract: To improve the Q value of a piezoelectric thin-film element in a state in which unnecessary vibration is suppressed, an acoustic reflection film (104) is affixed to a first electrode (102), a piezoelectric single-crystal substrate (101) is thinned by polishing from the other surface (101b) of the piezoelectric single-crystal substrate (101), such that the first electrode (102) and piezoelectric thin film (105) are piled on the piezoelectric single-crystal substrate (101). In this polishing, a pressure (polishing pressure) to the surface (101b) during polishing in an electrode formation region where the first electrode (102) is formed differs from that in a non-electrode formation region around the electrode formation region. Consequently, the electrode formation region of the piezoelectric thin film (105), where the first electrode (102) is formed, is made thinner than the non-electrode formation region around the electrode formation region.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 8, 2020
    Assignees: PIEZO STUDIO INC., TOHOKU UNIVERSITY
    Inventors: Kenji Inoue, Akira Yoshikawa, Yuji Ohashi, Yuui Yokota, Kei Kamada, Shunsuke Kurosawa
  • Publication number: 20190140160
    Abstract: The present invention makes clear and defines a congruent composition of a langasite-based oxide, and establishes a method of manufacturing a crystal by any desired composition of AE3ME1+a(Ga1-xAlx)3+bSi2+cO14 (AE is an alkaline-earth metal, ME is Nb or Ta, 0?x?1, ?0.5<a?0 or 0<a<0.5, ?0.5<b?0 or 0<b?0.5, and ?0.5<c?0 or 0<c<0.5, excluding a=b=c=0). This makes it possible to suppress the formation of an impurity, and improve the yield and crystal manufacturing rate. The raw material is a raw material mixture prepared by mixing an alkaline-earth metal or its carbonate or oxide, Nb or Ta or its oxide, Ga or its oxide, Al or its oxide, and Si or its oxide.
    Type: Application
    Filed: February 24, 2017
    Publication date: May 9, 2019
    Inventors: Akira YOSHIKAWA, Yuui YOKOTA, Yuji OHASHI, Kei KAMADA, Tetsuo KUDO, Kenji INOUE, Yasuhiro SHOJI, Yu IGARASHI, Mototaka ARAKAWA, Shunsuke KUROSAWA, Akihiro YAMAJI
  • Patent number: 10174247
    Abstract: An illuminant has a short fluorescence lifetime, high transparency, and high light yield and a radiation detector uses the illuminant. The illuminant is appropriate for a radiation detector for detecting gamma-rays, X-rays, ?-rays, and neutron rays, and has high radiation resistance, a short fluorescence decay time and high emission intensity. The illuminant has a garnet structure using emission from the 4f5d level of Ce3+, and includes a garnet illuminant prepared by co-doping of at least one type of monovalent or divalent cation at a molar ratio of 7000 ppm or less with respect to all cations, to an illuminant having a garnet structure represented by general formula CexRE3?xM5+yO12+3y/2 (where 0.0001?x?0.3, 0?y?0.5 or 0?y??0.5, M is one type or two or more types selected from Al, Lu, Ga, and Sc, and RE is one type or two or more types selected from La, Pr, Gd, Tb, Yb, Y, and Lu).
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: January 8, 2019
    Assignees: TOHOKU TECHNO ARCH CO., LTD., C & A CORPORATION
    Inventors: Kei Kamada, Akira Yoshikawa, Yuui Yokota, Shunsuke Kurosawa, Yasuhiro Shoji
  • Publication number: 20180226939
    Abstract: To improve the Q value of a piezoelectric thin-film element in a state in which unnecessary vibration is suppressed, an acoustic reflection film (104) is affixed to a first electrode (102), a piezoelectric single-crystal substrate (101) is thinned by polishing from the other surface (101b) of the piezoelectric single-crystal substrate (101), such that the first electrode (102) and piezoelectric thin film (105) are piled on the piezoelectric single-crystal substrate (101). In this polishing, a pressure (polishing pressure) to the surface (101b) during polishing in an electrode formation region where the first electrode (102) is formed differs from that in a non-electrode formation region around the electrode formation region. Consequently, the electrode formation region of the piezoelectric thin film (105), where the first electrode (102) is formed, is made thinner than the non-electrode formation region around the electrode formation region.
    Type: Application
    Filed: July 25, 2016
    Publication date: August 9, 2018
    Inventors: Kenji INOUE, Akira YOSHIKAWA, Yuji OHASHI, Yuui YOKOTA, Kei KAMADA, Shunsuke KUROSAWA
  • Patent number: 10011770
    Abstract: A crystal material that is represented by a general formula (1): (RExA1-x-y-sByM?s)2+?(Si1-t,M?t)2+?O7+? (1), the crystal material having a pyrochlore type structure, being a nonstoichiometric composition, and being a congruent melting composition, wherein in Formula (1), A contains at least one or more selected from Gd, Y, La, Sc, Yb, and Lu; B contains at least one or more selected from La, Gd, Yb, Lu, Y, and Sc; 0.1?y<0.4; RE contains at least one or more selected from Ce, Pr, Nd, Eu, Tb, and Yb; 0<x<0.1; M? and M? contain at least one or more selected from Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Ta, and W; 0?s<0.01 and 0?t<0.01; and 0<|?|<0.3 and 0?|?|<0.3 and 0?|?|<0.5.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 3, 2018
    Assignees: TOHOKU UNIVERSITY, C&A CORPORATION
    Inventors: Shunsuke Kurosawa, Akira Yoshikawa, Kei Kamada, Yuui Yokota, Yuji Ohashi, Takahiko Horiai, Yasuhiro Shoji, Rikito Murakami
  • Publication number: 20180100101
    Abstract: A crystal material that is represented by a general formula (1): (RExA1-x-y-sByM?s)2+?(Si1-t?M?t)2+?O7+? (1), the crystal material having a pyrochlore type structure, being a nonstoichiometric composition, and being a congruent melting composition, wherein in Formula (1), A contains at least one or more selected from Gd, Y, La, Sc, Yb, and Lu; B contains at least one or more selected from La, Gd, Yb, Lu, Y, and Sc; 0.1?y<0.4; RE contains at least one or more selected from Ce, Pr, Nd, Eu, Tb, and Yb; 0<x<0.1; M? and M? contain at least one or more selected from Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Ta, and W; 0?s<0.01 and 0?t<0.01; and 0<|?|<0.3 and 0?|?|<0.3 and 0?|?|<0.5.
    Type: Application
    Filed: May 27, 2016
    Publication date: April 12, 2018
    Inventors: Shunsuke KUROSAWA, Akira YOSHIKAWA, Kei KAMADA, Yuui YOKOTA, Yuji OHASHI, Takahiko HORIAI, Yasuhiro SHOJI, Rikito MURAKAMI
  • Patent number: 9810792
    Abstract: A crystal material represented by a general formula (1): (Gd1-x-y-zLaxMEyREz)2MM2O7?? (1), where ME is at least one selected from Y, Yb, Sc, and Lu; RE is Ce or Pr; MM is at least one selected from Si and Ge; and ranges of x, y, and z are represented by the following (i): (i) 0.0?x+y+z<1.0, 0.05?x+z<1.0, 0.0?y<1.0, and 0.0001?z<0.05 (where, when RE is Ce, y=0 is an exception).
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: November 7, 2017
    Assignee: TOHOKU UNIVERSITY
    Inventors: Akira Yoshikawa, Shunsuke Kurosawa, Yuui Yokota, Yasuhiro Shoji, Akira Suzuki, Toetsu Shishido
  • Publication number: 20170044433
    Abstract: An illuminant has a short fluorescence lifetime, high transparency, and high light yield and a radiation detector uses the illuminant. The illuminant is appropriate for a radiation detector for detecting gamma-rays, X-rays, ?-rays, and neutron rays, and has high radiation resistance, a short fluorescence decay time and high emission intensity. The illuminant has a garnet structure using emission from the 4f5d level of Ce3+, and includes a garnet illuminant prepared by co-doping of at least one type of monovalent or divalent cation at a molar ratio of 7000 ppm or less with respect to all cations, to an illuminant having a garnet structure represented by general formula CexRE3?xM5+yO12+3y/2 (where 0.0001?x?0.3, 0?y?0.5 or 0?y??0.5, M is one type or two or more types selected from Al, Lu, Ga, and Sc, and RE is one type or two or more types selected from La, Pr, Gd, Tb, Yb, Y, and Lu).
    Type: Application
    Filed: April 30, 2015
    Publication date: February 16, 2017
    Applicants: TOHOKU TECHNO ARCH CO., LTD., C & A CORPORATION
    Inventors: Kei KAMADA, Akira YOSHIKAWA, Yuui YOKOTA, Shunsuke KUROSAWA, Yasuhiro SHOJI
  • Publication number: 20150346360
    Abstract: A crystal material represented by a general formula (1): (Gd1-x-y-zLaxMEyREz)2MM2O7 (1), where ME is at least one selected from Y, Yb, Sc, and Lu; RE is Ce or Pr; MM is at least one selected from Si and Ge; and ranges of x, y, and z are represented by the following (i): (i) 0.0?x+y+z<1.0, 0.05?x+z<1.0, 0.0?y<1.0, and 0.0001?z<0.05 (where, when RE is Ce, y=0 is an exception).
    Type: Application
    Filed: December 26, 2013
    Publication date: December 3, 2015
    Applicant: TOHOKU UNIVERSITY
    Inventors: Akira YOSHIKAWA, Shunsuke KUROSAWA, Yuui YOKOTA, Yasuhiro SHOJI, Akira SUZUKI, Toetsu SHISHIDO