Patents by Inventor Shunsuke Okura

Shunsuke Okura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11849235
    Abstract: Provided are a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus capable of reading signals produced with different conversion gains and having different signal directions. A pixel signal processing part 400 includes a first reading part 410 and a second reading part 420. Of a pixel signal PIXOUT input into an input node ND401, the first reading part 410 inverts the signal direction of a first-conversion-gain signal (HCGRST, HCGSIG) and outputs an inverted first-conversion-gain signal (HCGRST, HCGSIG), which has been subjected to inversion and amplification, to an AD converting part 430 via a connection node ND402. Of the pixel signal PIXOUT input into the input node ND401, the second reading part 420 keeps the signal direction of a second-conversion-gain signal (LCGSIG, LCGRST) unchanged, and outputs a non-inverted second-conversion-gain signal (LCGSIG, LCGRST) to the AD converting part 430 via the connection node ND402.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: December 19, 2023
    Assignees: Brillnics Singapore Pte. Ltd., THE RITSUMEIKAN TRUST
    Inventors: Shunsuke Okura, Ai Otani, Ken Miyauchi, Hideki Owada, Sangman Han, Isao Takayanagi
  • Publication number: 20230353898
    Abstract: A solid-state imaging device, a method for driving a solid-state imaging device and an electronic apparatus are capable of reducing kTC noise of a LCG signal, preventing a drop in SNR at the conjunction point between a HCG signal and the LCG signal, and eventually achieving improved image quality. At a start of a reset period, first and second reset transistors are switched into a conduction state. During a predetermined first period after the reset period starts, the first reset line is kept connected to a reset potential. After the first period elapses, the second reset transistor is switched into a non-conduction state to switch the first reset line into a floating state, so that the first reset line has high impedance. After a second period elapses and when the reset period ends, the first reset transistor is switched into the non-conduction state.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 2, 2023
    Inventors: Kazuki TATSUTA, Shunsuke OKURA, Ken MIYAUCHI, Hideki OWADA, Sangman HAN, Isao TAKAYANAGI
  • Patent number: 11637982
    Abstract: A solid-state imaging device includes a pixel part, a reading part for reading a pixel signal from the pixel part and a response data generating part including a fuzzy extractor. The response data generating part generates response data including a unique key in association with at least one selected from among variation information of pixels and variation information of the reading part. The response data generating part generates, when regenerating a key, a unique key using helper data acquired in generation of an initial key, variation information acquired in the regeneration of the key, and reliability information determined based on the variation information acquired in the regeneration of the key.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: April 25, 2023
    Assignees: BRILLNICS JAPAN INC., THE RITSUMEIKAN TRUST
    Inventors: Shunsuke Okura, Masayoshi Shirahata, Takeshi Fujino, Mitsuru Shiozaki, Takaya Kubota
  • Publication number: 20220408047
    Abstract: Provided are a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus capable of reading signals produced with different conversion gains and having different signal directions. A pixel signal processing part 400 includes a first reading part 410 and a second reading part 420. Of a pixel signal PIXOUT input into an input node ND401, the first reading part 410 inverts the signal direction of a first-conversion-gain signal (HCGRST, HCGSIG) and outputs an inverted first-conversion-gain signal (HCGRST, HCGSIG), which has been subjected to inversion and amplification, to an AD converting part 430 via a connection node ND402. Of the pixel signal PIXOUT input into the input node ND401, the second reading part 420 keeps the signal direction of a second-conversion-gain signal (LCGSIG, LCGRST) unchanged, and outputs a non-inverted second-conversion-gain signal (LCGSIG, LCGRST) to the AD converting part 430 via the connection node ND402.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 22, 2022
    Inventors: Shunsuke OKURA, Ai OTANI, Ken MIYAUCHI, Hideki OWADA, Sangman HAN, Isao TAKAYANAGI
  • Patent number: 11336857
    Abstract: A fuzzy extractor includes an initial key generating part including a true random number generator, and a key regenerating part. The true random number generator generates a true random number using a read-out signal read from the reading part or a pixel signal read from the pixels of the pixel part in a true random number generation mode. The initial key generating part generates helper data and an initial key based on the true random number generated by the true random number generator and variation information acquired as a response when the initial key is generated. The key regenerating part generates, when a key is regenerated, a unique key based on helper data acquired when the initial key is generated and variation information acquired as a response including an error when the key is regenerated.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: May 17, 2022
    Assignees: BRILLNICS JAPAN INC., THE RITSUMEIKAN TRUST
    Inventors: Shunsuke Okura, Kenichiro Ishikawa, Masayoshi Shirahata, Takeshi Fujino, Mitsuru Shiozaki, Takaya Kubota
  • Patent number: 11070761
    Abstract: One object is to provide a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus capable of removing a noise gap at a connection point between the low conversion gain data and the high conversion gain data, suppressing increase of power consumption and circuit areas, providing a wide dynamic range, and thus achieving high image quality. An amplifying part for amplifying a plurality of pixel signals read out from a pixel includes an amplifier. The amplifier includes an inverting input terminal and a non-inverting input terminal. The inverting input terminal includes a first inverting input channel and a second inverting input channel. The first inverting input channel is connected to a second node, and the second inverting input channel is connected to a third node. A capacitance of a second sampling capacitor is 8C, and a capacitance of a first sampling capacitor is C.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: July 20, 2021
    Assignee: BRILLNICS SINGAPORE PTE. LTD.
    Inventor: Shunsuke Okura
  • Patent number: 11050966
    Abstract: In a solid-state imaging device 10, the first binning switch 81 is formed such that a MOS capacitance and a wire capacitance of a wire connected to the binning switch 81, each having a value in accordance with an ON or OFF state, are added to a capacitance of a floating diffusion FD of a pixel PXL to be read, so as to optimize the capacitance of the floating diffusion FD and optimally adjust a conversion gain in accordance with a mode. This operation increases an image quality.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: June 29, 2021
    Assignee: BRILLNICS SINGAPORE PTE. LTD.
    Inventors: Kazuya Mori, Shunsuke Okura, Isao Takayanagi
  • Publication number: 20210127080
    Abstract: A solid-state imaging device includes a pixel part, a reading part for reading a pixel signal from the pixel part and a response data generating part including a fuzzy extractor. The response data generating part generates response data including a unique key in association with at least one selected from among variation information of pixels and variation information of the reading part. The response data generating part generates, when regenerating a key, a unique key using helper data acquired in generation of an initial key, variation information acquired in the regeneration of the key, and reliability information determined based on the variation information acquired in the regeneration of the key.
    Type: Application
    Filed: January 18, 2019
    Publication date: April 29, 2021
    Inventors: Shunsuke OKURA, Masayoshi SHIRAHATA, Takeshi FUJINO, Mitsuru SHIOZAKI, Takaya KUBOTA
  • Patent number: 10791293
    Abstract: A pixel signal includes a first pixel signal and a second pixel signal. The first pixel signal includes a read-out reset signal and a read-out luminance signal that are read out in the stated order from a pixel in a first operation, and the second pixel signal includes a read-out luminance signal and a read-out reset signal that are read out in the stated order from the pixel in a second operation. A reading circuit 40 includes an amplifying part 420 for amplifying the pixel signal, and an AD converting part 430 for analog-to-digital converting, in connection with a search signal, the pixel signal amplified by the amplifying part 420. A first search signal Vramp1 for the first pixel signal and a second search signal Vramp2 for the second pixel signal are configurable such that search levels thereof are inverted.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 29, 2020
    Assignee: BRILLNICS, INC.
    Inventor: Shunsuke Okura
  • Publication number: 20200288078
    Abstract: A fuzzy extractor includes an initial key generating part including a true random number generator, and a key regenerating part. The true random number generator generates a true random number using a read-out signal read from the reading part or a pixel signal read from the pixels of the pixel part in a true random number generation mode. The initial key generating part generates helper data and an initial key based on the true random number generated by the true random number generator and variation information acquired as a response when the initial key is generated. The key regenerating part generates, when a key is regenerated, a unique key based on helper data acquired when the initial key is generated and variation information acquired as a response including an error when the key is regenerated.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Shunsuke OKURA, Kenichiro ISHIKAWA, Masayoshi SHIRAHATA, Takeshi FUJINO, Mitsuru SHIOZAKI, Takaya KUBOTA
  • Publication number: 20200236318
    Abstract: One object is to provide a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus capable of removing a noise gap at a connection point between the low conversion gain data and the high conversion gain data, suppressing increase of power consumption and circuit areas, providing a wide dynamic range, and thus achieving high image quality. An amplifying part for amplifying a plurality of pixel signals read out from a pixel includes an amplifier. The amplifier includes an inverting input terminal and a non-inverting input terminal. The inverting input terminal includes a first inverting input channel and a second inverting input channel. The first inverting input channel is connected to a second node, and the second inverting input channel is connected to a third node. A capacitance of a second sampling capacitor is 8C, and a capacitance of a first sampling capacitor is C.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 23, 2020
    Inventor: Shunsuke OKURA
  • Publication number: 20200162691
    Abstract: In a solid-state imaging device 10, the first binning switch 81 is formed such that a MOS capacitance and a wire capacitance of a wire connected to the binning switch 81, each having a value in accordance with an ON or OFF state, are added to a capacitance of a floating diffusion FD of a pixel PXL to be read, so as to optimize the capacitance of the floating diffusion FD and optimally adjust a conversion gain in accordance with a mode. This operation increases an image quality.
    Type: Application
    Filed: April 11, 2018
    Publication date: May 21, 2020
    Inventors: Kazuya MORI, Shunsuke OKURA, Isao TAKAYANAGI
  • Publication number: 20200029049
    Abstract: A pixel signal includes a first pixel signal and a second pixel signal. The first pixel signal includes a read-out reset signal and a read-out luminance signal that are read out in the stated order from a pixel in a first operation, and the second pixel signal includes a read-out luminance signal and a read-out reset signal that are read out in the stated order from the pixel in a second operation. A reading circuit 40 includes an amplifying part 420 for amplifying the pixel signal, and an AD converting part 430 for analog-to-digital converting, in connection with a search signal, the pixel signal amplified by the amplifying part 420. A first search signal Vramp1 for the first pixel signal and a second search signal Vramp2 for the second pixel signal are configurable such that search levels thereof are inverted.
    Type: Application
    Filed: March 28, 2018
    Publication date: January 23, 2020
    Inventor: Shunsuke OKURA
  • Publication number: 20200027910
    Abstract: One object of the present invention is to provide a solid-state imaging device, a method for fabricating a solid-state imaging device, and an electronic apparatus that implement both a wide dynamic range and a high sensitivity. A storage capacitor serving as a storage capacitance element includes a first electrode and a second electrode on a second substrate surface side. The first electrode is formed of a p+ region (the second conductivity type semiconductor region) formed in the surface of a second substrate surface of a substrate, and the second electrode is formed above the second substrate surface so as to be opposed at a distance to the first electrode in the direction perpendicular to the substrate surface. The first electrode and the second electrode are arranged so as to spatially overlap with a photoelectric conversion part in the direction perpendicular to the substrate surface.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 23, 2020
    Inventors: Shunsuke OKURA, Isao TAKAYANAGI, Kazuya MORI, Ken MIYAUCHI, Shigetoshi SUGAWA
  • Patent number: 10484638
    Abstract: A solid-state imaging device having a pixel portion in which a plurality of pixels each including a photodiode are arranged in rows and columns, a reading part for reading pixel signals from the pixel portion, and a key generation part which generates a unique key by using, as the key generation-use data, at least one of fluctuation information of pixels and fluctuation information of the reading part, wherein the key generation part includes a tamper resistance enhancement processing part for processing the key generation-use data to enhance the tamper resistance making it difficult to break the unique key as tamper resistance enhancement processing. Due to this, it is possible to generate a unique key having a high confidentiality. Further, it is possible to improve reproducibility and uniqueness of the unique ID, is possible to secure a high tamper resistance of the unique key, and consequently is possible to reliably prevent tampering and forgery of an image.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: November 19, 2019
    Assignees: Brillnics Japan Inc., The Ritsumeikan Trust
    Inventors: Shunsuke Okura, Masato Yamaguchi, Masayoshi Shirahata, Takeshi Fujino, Mitsuru Shiozaki, Takaya Kubota
  • Patent number: 10382708
    Abstract: A solid-state imaging device 10 includes a pixel portion 20 in which a plurality of pixels including photodiodes are arranged in rows and columns, a reading part 90 for reading pixel signals from the pixel portion, and a key generation part 82 which generates a unique key by using at least one of pixel fluctuation information or reading part fluctuation information. According to this configuration, the tamper resistance of the unique key can be secured and consequently alteration and falsification of images can be prevented.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 13, 2019
    Assignees: BRILLNICS INC., THE RITSUMEIKAN TRUST
    Inventors: Isao Takayanagi, Shunsuke Tanaka, Shinichiro Matsuo, Shunsuke Okura, Shusuke Iwata, Takeshi Fujino, Mitsuru Shiozaki, Takeshi Kumaki, Takaya Kubota, Masayoshi Shirahata
  • Publication number: 20190222789
    Abstract: A solid-state imaging device having a pixel portion in which a plurality of pixels each including a photodiode are arranged in rows and columns, a reading part for reading pixel signals from the pixel portion, and a key generation part which generates a unique key by using, as the key generation-use data, at least one of fluctuation information of pixels and fluctuation information of the reading part, wherein the key generation part includes a tamper resistance enhancement processing part for processing the key generation-use data to enhance the tamper resistance making it difficult to break the unique key as tamper resistance enhancement processing. Due to this, it is possible to generate a unique key having a high confidentiality. Further, it is possible to improve reproducibility and uniqueness of the unique ID, is possible to secure a high tamper resistance of the unique key, and consequently is possible to reliably prevent tampering and forgery of an image.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Applicants: Brillnics Japan Inc., The Ritsumeikan Trust
    Inventors: Shunsuke Okura, Masato Yamaguchi, Masayoshi Shirahata, Takeshi Fujino, Mitsuru Shiozaki, Takaya Kubota
  • Patent number: 10356353
    Abstract: A solid-state imaging device having a pixel portion in which a plurality of pixels each including a photodiode are arranged in rows and columns, a reading part for reading pixel signals from the pixel portion, and a key generation part which generates a unique key by using, as the key generation-use data, at least one of fluctuation information of pixels and fluctuation information of the reading part, wherein the key generation part includes a tamper resistance enhancement processing part for processing the key generation-use data to enhance the tamper resistance making it difficult to break the unique key as tamper resistance enhancement processing. Due to this, a unique key having a high confidentiality can be generated. Further, reproducibility and uniqueness of the unique ID can be improved to secure a high tamper resistance of the unique key, and tampering and forgery of an image can be reliably prevented.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 16, 2019
    Assignees: BRILLNICS JAPAN INC., THE RITSUMEIKAN TRUST
    Inventors: Shunsuke Okura, Masato Yamaguchi, Masayoshi Shirahata, Takeshi Fujino, Mitsuru Shiozaki, Takaya Kubota
  • Patent number: 10341597
    Abstract: A solid-state imaging device comprised of a first substrate on which a pixel part is formed and a second substrate on which a column readout circuit is formed along a column level connection part, a row driver is formed along a row level connection part, and a pitch conversion-use interconnect region including a slanted interconnect for pitch conversion among interconnects is formed, the pitch conversion-use interconnect region is formed at least between the end part of the column readout circuit having a third pitch shorter than the pixel part and the end part of the column level connection part and/or between the end part of the row driver having a fourth pitch shorter than the pixel part and the end part of the row level connection part.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: July 2, 2019
    Assignee: Brillnics Japan Inc.
    Inventors: Toshinori Otaka, Shunsuke Okura, Junichi Nakamura
  • Patent number: 10277856
    Abstract: A pixel portion includes a first pixel array in which a plurality of photoelectric conversion reading parts of first pixels are arranged in a matrix, a holding part array in which a plurality of signal holding parts of first pixels are arranged in a matrix, and a second pixel array in which a plurality of photoelectric conversion reading parts of second pixels are arranged in a matrix, wherein, at the time of a rolling shutter mode, readout signals of the photoelectric conversion reading parts of the first pixels and the second pixels are immediately output to a first vertical signal line without following a bypass route and, at the time of a global shutter mode, held signals of the signal holding parts of the first pixels are output to a second vertical signal line. Due to this, a solid-state imaging device can prevent complication of the configuration.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 30, 2019
    Assignee: BRILLNICS INC.
    Inventors: Shunsuke Okura, Toshinori Otaka, Junichi Nakamura