Patents by Inventor Shuo Cui

Shuo Cui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150222
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O3; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1<(Al2O3?(R2O+RO))/Li2O<0.3.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Patent number: 11976348
    Abstract: The present invention relates to a carbide tool cleaning and coating production line and a method, including a cleaning device including a support frame, a cleaning mechanism and a drying mechanism are sequentially disposed under the support frame connected to a moving mechanism, the moving mechanism is connected to a lifting mechanism being capable of being connected to a tool fixture bracket being configured to accommodate the tool fixture; a coating device including a coating chamber which a plane target mechanism and a turntable assembly disposed in, the turntable assembly is capable of being connected to a plurality of tool fixtures being capable of rotating around an axial line of the coating chamber under the driving of the turntable assembly and rotating around an axial line thereof at the same time; and, a manipulator being disposed between the cleaning device and the coating device.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 7, 2024
    Assignees: QINGDAO UNIVERSITY OF TECHNOLOGY, NINGBO SANHAN ALLOY MATERIAL CO., LTD.
    Inventors: Yanbin Zhang, Liang Luo, Lizhi Tang, Changhe Li, Weixi Ji, Binhui Wan, Shuo Yin, Huajun Cao, Bingheng Lu, Xin Cui, Mingzheng Liu, Teng Gao, Jie Xu, Huiming Luo, Haizhou Xu, Min Yang, Huaping Hong, Xiaoming Wang, Yuying Yang, Haogang Li, Wuxing Ma, Shuai Chen
  • Publication number: 20240136144
    Abstract: The invention provides an ion source structure of an ion implanter, which comprises an arc chamber, a filament in the arc chamber, and a cathode in the arc chamber, wherein the cathode has an upper surface and a lower surface, and at least one of the upper surface and the lower surface is non-planar.
    Type: Application
    Filed: November 24, 2022
    Publication date: April 25, 2024
    Applicant: United Semiconductor (Xiamen) Co., Ltd.
    Inventors: Wen Shuo Cui, WEN YI TAN
  • Patent number: 11951618
    Abstract: A multi-procedure integrated automatic production line for hard alloy blades under robot control is provided. The production line includes a rail-guided robot. A cutter passivation device and a blade cleaning and drying device are arranged on one side of the rail-guided robot. A blade-coating transfer table, a blade coating device, a blade boxing transfer table, a blade-tooling dismounting device and a blade boxing device are sequentially arranged on another side of the rail-guided robot. The blade-tooling dismounting device is arranged on one side of the blade boxing transfer table. The production line further includes squirrel-cage toolings for carrying the blades. The squirrel-cage tooling that are loaded with the blades can run among the cutter passivation device, the blade cleaning and drying device, the blade-coating transfer table and the blade boxing transfer table. The blades after being treated through the blade-tooling dismounting device are sent to the blade boxing device.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 9, 2024
    Assignees: Qingdao University of Technology, Ningbo Sanhan Alloy Material Co., Ltd.
    Inventors: Changhe Li, Teng Gao, Liang Luo, Lizhi Tang, Yanbin Zhang, Weixi Ji, Binhui Wan, Shuo Yin, Huajun Cao, Bingheng Lu, Xin Cui, Mingzheng Liu, Jie Xu, Huiming Luo, Haizhou Xu, Min Yang, Huaping Hong, Yuying Yang, Haogang Li, Wuxing Ma, Shuai Chen
  • Patent number: 11905209
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O3; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Grant
    Filed: December 18, 2022
    Date of Patent: February 20, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20230127596
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O3; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Application
    Filed: December 18, 2022
    Publication date: April 27, 2023
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Patent number: 11584681
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O5; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: February 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210292220
    Abstract: Glass stack configurations including a carrier plate, setter plates, and glass sheets for thermal treatment of the glass sheets to form glass ceramic articles are provided. The glass stacking configurations and components described herein are selected to improve thermal uniformity throughout a glass stack during ceramming processes while maintaining or even reducing the stresses in the resultant glass ceramic article. Accordingly, the glass ceramic articles made according to the various embodiments described herein exhibit improved optical qualities and less warp than glass ceramic articles made according to conventional processes. Various embodiments of carrier plates, setter plates, parting agent compositions, and methods of stacking glass sheets are described.
    Type: Application
    Filed: July 3, 2019
    Publication date: September 23, 2021
    Inventors: SHUO CUI, Jill Marie Marie, John Robert Saltzer, Richard Alan Shelleman, Bin Yang
  • Publication number: 20210155530
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O3; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 27, 2021
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210130228
    Abstract: Glass stack configurations including a carrier plate, setter plates, and glass sheets for thermal treatment of the glass sheets to form glass ceramic articles are provided. The glass stacking configurations and components described herein are selected to improve thermal uniformity throughout a glass stack during ceramming processes while maintaining or even reducing the stresses in the resultant glass ceramic article. Accordingly, the glass ceramic articles made according to the various embodiments described herein exhibit improved optical qualities and less warp than glass ceramic articles made according to conventional processes. Various embodiments of carrier plates, setter plates, parting agent compositions, and methods of stacking glass sheets are described.
    Type: Application
    Filed: July 15, 2019
    Publication date: May 6, 2021
    Inventors: SHUO CUI, Jill Marie Hall, Gregory William Keyes, John Robert Saltzer
  • Publication number: 20210009459
    Abstract: A method for forming glass ceramic articles includes heating a stack of glass sheets to a nucleation temperature to create a nucleated crystallizable stack of sheets; heating the nucleated crystallizable stack of glass sheets to a crystallization temperature; and maintaining the crystallization temperature for a predetermined period of time to produce the glass-ceramic articles. The stack of glass sheets has a mass index of less than or equal to 35.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Inventors: I-Wen Chou, Carol Ann Click, Shuo Cui, James Haward Edmonston, Mathieu Gerard Jacquues Hubert, Katherine Weber Kroemer
  • Patent number: D1021387
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: April 9, 2024
    Inventors: Bin Huang, Shuo Liu, Hang Du, Ruoxue Yang, Chongyang Cui