Patents by Inventor Shuo-Yen Chou

Shuo-Yen Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10417376
    Abstract: Source beam optimization (SBO) methods are disclosed herein for enhancing lithography printability. An exemplary method includes receiving an integrated circuit (IC) design layout and performing an SBO process using the IC design layout to generate a mask shot map and an illumination source map. The SBO process uses an SBO model that collectively simulates a mask making process using the mask shot map and a wafer making process using the illumination source map. A mask can be fabricated using the mask shot map, and a wafer can be fabricated using the illumination source map (and, in some implementations, using the mask fabricated using the mask shot map). The wafer includes a final wafer pattern that corresponds with a target wafer pattern defined by the IC design layout. The SBO methods disclosed herein can significantly reduce (or eliminate) variances between the final wafer pattern and the target wafer pattern.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: September 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsu-Ting Huang, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20190146355
    Abstract: Various examples of a technique for performing optical proximity correction and for forming a photomask are provided herein. In some examples, a layout is received that includes a shape to be formed on a photomask. A plurality of target lithographic contours are determined for the shape that includes a first target contour for a first set of process conditions and a second target contour that is different from the first target contour for a second set of process conditions. A lithographic simulation of the layout is performed to produce a first simulated contour at the first set of process conditions and a second simulated contour at the second set of process conditions. A modification to the layout is determined based on edge placement errors between the first simulated contour and the first target contour and between the second simulated contour and the second target contour.
    Type: Application
    Filed: August 7, 2018
    Publication date: May 16, 2019
    Inventors: Dong-Yo Jheng, Ken-Hsien Hsieh, Shih-Ming Chang, Chih-Jie Lee, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20190006343
    Abstract: A method includes providing a photomask having a patterned absorption layer over a substrate. The photomask is irradiated with a beam having a mixture of transverse electronic (TE) waves and transverse magnetic (TM) waves. The irradiating includes generating surface plasmonic polaritons (SPP) on a sidewall of the patterned absorption layer. The SPP is used to suppress the TM waves while reflecting the TE waves. A target substrate is exposed to TE waves.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Minfeng Chen, Shuo-Yen CHOU
  • Publication number: 20180285512
    Abstract: Source beam optimization (SBO) methods are disclosed herein for enhancing lithography printability. An exemplary method includes receiving an IC design layout and performing an SBO process using the IC design layout to generate a mask shot map and an illumination source map. The SBO process uses an SBO model that collectively simulates a mask making process using the mask shot mask and a wafer making process using the illumination source map. A mask can be fabricated using the mask shot map, and a wafer can be fabricated using the illumination source map (and, in some implementations, using the mask fabricated using the mask shot map). The wafer includes a final wafer pattern that corresponds with a target wafer pattern defined by the IC design layout. SBO methods disclosed herein can significantly reduce (or eliminate) variances between the final wafer pattern and the target wafer pattern.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Hsu-Ting Huang, Shuo-Yen Chou, Ru-Gun Liu
  • Patent number: 10083270
    Abstract: Target optimization methods are disclosed herein for enhancing lithography printability. An exemplary method includes receiving an IC design layout for a target pattern, wherein the target pattern has a corresponding target contour; modifying the target pattern, wherein the modified target pattern has a corresponding modified target contour; and generating an optimized target pattern when the modified target contour achieves functionality of the target pattern as defined by a constraint layer. The method can further include defining a cost function based on the constraint layer, where the cost function correlates a spatial relationship between a contour of the target pattern and the constraint layer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh, Shuo-Yen Chou, Ru-Gun Liu
  • Patent number: 10025175
    Abstract: A system and method that includes receiving a layout of an integrated circuit (IC) device. A template library is provided having a plurality of parameterized shape elements. A curvilinear feature of layout is classified by selecting at least one of the parameterized shape elements that defines the curvilinear feature. A template index is associated with the layout is formed that includes the selected parameterized shape element. The template index and the layout can be delivered to a mask writer, which uses the template index and the layout to fabricate a pattern on a photomask.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: July 17, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Tsai, Chih-Chiang Tu, Wen-Hao Cheng, Ru-Gun Liu, Shuo-Yen Chou
  • Publication number: 20180165388
    Abstract: A method includes establishing a simulation process for simulating fabrication of a structure on a wafer. The simulation process includes multiple simulation steps for simulating multiple wafer fabrication steps respectively, and further includes a step of testing the structure that produces a result representing quality of the structure. Each of the simulation steps has a respective adjustable process parameter. The method further includes specifying a respective workable range for each process parameter and running the simulation process in iterations using a wafer process simulator until the result becomes optimal. During the running of the simulation process, every two consecutive iterations either adjust two different process parameters within their workable ranges or adjust a same process parameter at opposite directions within its workable range.
    Type: Application
    Filed: February 8, 2017
    Publication date: June 14, 2018
    Inventors: Ru-Gun Liu, Shih-Ming Chang, Shuo-Yen Chou, Zengqin Zhao, Chien Wen Lai
  • Publication number: 20180165397
    Abstract: Target optimization methods are disclosed herein for enhancing lithography printability. An exemplary method includes receiving an IC design layout for a target pattern, wherein the target pattern has a corresponding target contour; modifying the target pattern, wherein the modified target pattern has a corresponding modified target contour; and generating an optimized target pattern when the modified target contour achieves functionality of the target pattern as defined by a constraint layer. The method can further include defining a cost function based on the constraint layer, where the cost function correlates a spatial relationship between a contour of the target pattern and the constraint layer.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh, Shuo-Yen Chou, Ru-Gun Liu
  • Patent number: 9990460
    Abstract: Source beam optimization (SBO) methods are disclosed herein for enhancing lithography printability. An exemplary method includes receiving an integrated circuit (IC) design layout and performing an SBO process using the IC design layout to generate a mask shot map and an illumination source map. The SBO process uses an SBO model that collectively simulates a mask making process using the mask shot mask and a wafer making process using the illumination source map. A mask can be fabricated using the mask shot map, and a wafer can be fabricated using the illumination source map (and, in some implementations, using the mask fabricated using the mask shot map). The wafer includes a final wafer pattern that corresponds with a target wafer pattern defined by the IC design layout. The SBO methods disclosed herein can significantly reduce (or eliminate) variances between the final wafer pattern and the target wafer pattern.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 5, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsu-Ting Huang, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20180149982
    Abstract: A pattern modification method and a patterning process are provided. The method includes extracting a first pattern and a second pattern to be respectively transferred to a first target portion and a second target portion of a resist layer. The method also includes obtaining regional information of the first target portion and the second target portion. The method includes determining a first desired focus position for transferring the first pattern based on the regional information. In addition, the method includes determining a second desired focus position for transferring the second pattern based on the regional information. The method includes modifying one or both of the first pattern and the second pattern. As a result, focus positions of the first pattern and the second pattern are shifted to be substantially and respectively positioned at the first desired focus position and the second desired focus position during an exposure operation.
    Type: Application
    Filed: January 5, 2017
    Publication date: May 31, 2018
    Inventors: Shih-Ming CHANG, Ru-Gun LIU, Shuo-Yen CHOU, Chien-Wen LAI, Zengqin ZHAO
  • Publication number: 20180096094
    Abstract: Source beam optimization (SBO) methods are disclosed herein for enhancing lithography printability. An exemplary method includes receiving an integrated circuit (IC) design layout and performing an SBO process using the IC design layout to generate a mask shot map and an illumination source map. The SBO process uses an SBO model that collectively simulates a mask making process using the mask shot mask and a wafer making process using the illumination source map. A mask can be fabricated using the mask shot map, and a wafer can be fabricated using the illumination source map (and, in some implementations, using the mask fabricated using the mask shot map). The wafer includes a final wafer pattern that corresponds with a target wafer pattern defined by the IC design layout. The SBO methods disclosed herein can significantly reduce (or eliminate) variances between the final wafer pattern and the target wafer pattern.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Hsu-Ting Huang, Shuo-Yen Chou, Ru-Gun Liu
  • Patent number: 9747408
    Abstract: The present disclosure provides an integrated circuit (IC) method in accordance with some embodiments. The method includes receiving an IC design layout; and performing an inverse beam technology (IBT) process to the IC design layout, thereby generating a final mask pattern, wherein the IBT process uses a single IBT model to simulate both a mask making process and a wafer making process.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: August 29, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsu-Ting Huang, Ru-Gun Liu, Shuo-Yen Chou, Tsai-Sheng Gau
  • Publication number: 20170053058
    Abstract: Provided is a method for fabricating a semiconductor device including receiving an integrated circuit (IC) layout pattern, for example, from a design house. In some embodiments, a process simulation model is utilized to generate a freeform layout pattern by an inverse lithography technology (ILT) process. The process simulation model is configured to simulate processing conditions for the IC layout pattern. In various embodiments, the freeform layout pattern is associated with the IC layout pattern. In some examples, a simplified layout pattern is generated, where the simplified layout pattern is an approximation of the freeform layout pattern. Thereafter, sub-resolution assist feature (SRAF) rules, based on the simplified layout pattern, may be calculated and an SRAF rule table may be generated.
    Type: Application
    Filed: August 21, 2015
    Publication date: February 23, 2017
    Inventors: Jue-Chin Yu, Shuo-Yen Chou
  • Publication number: 20170053056
    Abstract: The present disclosure provides an integrated circuit (IC) method in accordance with some embodiments. The method includes receiving an IC design layout; and performing an inverse beam technology (IBT) process to the IC design layout, thereby generating a final mask pattern, wherein the IBT process uses a single IBT model to simulate both a mask making process and a wafer making process.
    Type: Application
    Filed: August 21, 2015
    Publication date: February 23, 2017
    Inventors: Hsu-Ting Huang, Ru-Gun Liu, Shuo-Yen Chou, Tsai-Sheng Gau
  • Patent number: 9495507
    Abstract: Provided is a method of transforming an integrated circuit (IC) pattern into one or more patterns suitable for subsequent processing, such as mask fabrication. The method includes receiving an IC pattern that has an arbitrary shape, and using a computer, deriving an approximation IC pattern that is a user-defined fabrication-friendly shape, such as a rectangle or an ellipse. The method further includes calculating a pattern approximation error between the IC pattern and the approximation IC pattern. The method further includes checking whether the pattern approximation error is less than a user-defined threshold. If it is, the method further includes replacing the IC pattern with the approximation IC pattern for subsequent fabrication. Otherwise, the method further includes splitting the IC pattern into subparts, and recursively transforming each of the subparts.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jue-Chin Yu, Lun Hsieh, Pi-Tsung Chen, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20160154925
    Abstract: Provided is a method of transforming an integrated circuit (IC) pattern into one or more patterns suitable for subsequent processing, such as mask fabrication. The method includes receiving an IC pattern that has an arbitrary shape, and using a computer, deriving an approximation IC pattern that is a user-defined fabrication-friendly shape, such as a rectangle or an ellipse. The method further includes calculating a pattern approximation error between the IC pattern and the approximation IC pattern. The method further includes checking whether the pattern approximation error is less than a user-defined threshold. If it is, the method further includes replacing the IC pattern with the approximation IC pattern for subsequent fabrication. Otherwise, the method further includes splitting the IC pattern into subparts, and recursively transforming each of the subparts.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Jue-Chin Yu, Lun Hsieh, Pi-Tsung Chen, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20160132627
    Abstract: A system and method that includes receiving a layout of an integrated circuit (IC) device. A template library is provided having a plurality of parameterized shape elements. A curvilinear feature of layout is classified by selecting at least one of the parameterized shape elements that defines the curvilinear feature. A template index is associated with the layout is formed that includes the selected parameterized shape element. The template index and the layout can be delivered to a mask writer, which uses the template index and the layout to fabricate a pattern on a photomask.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: Chi-Ming Tsai, Chih-Chiang Tu, Wen-Hao Cheng, Ru-Gun Liu, Shuo-Yen Chou
  • Patent number: 9256709
    Abstract: Provided is a method of transforming an integrated circuit (IC) pattern into one or more patterns suitable for subsequent processing, such as mask fabrication. The method includes receiving an IC pattern that has an arbitrary shape, and using a computer, deriving an approximation IC pattern, wherein the approximation IC pattern is in a shape that is a user-defined fabrication-friendly shape, such as a rectangle or an ellipse. The method further includes calculating a pattern approximation error between the IC pattern and the approximation IC pattern. The method further includes checking whether the pattern approximation error is less than a user-defined threshold. If it is, the method further includes outputting the approximation IC pattern for subsequent fabrication. Otherwise, the method further includes splitting the IC pattern into a plurality of subparts, and recursively transforming each of the plurality of subparts.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jue-Chin Yu, Lun Hsieh, Pi-Tsung Chen, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20150227671
    Abstract: Provided is a method of transforming an integrated circuit (IC) pattern into one or more patterns suitable for subsequent processing, such as mask fabrication. The method includes receiving an IC pattern that has an arbitrary shape, and using a computer, deriving an approximation IC pattern, wherein the approximation IC pattern is in a shape that is a user-defined fabrication-friendly shape, such as a rectangle or an ellipse. The method further includes calculating a pattern approximation error between the IC pattern and the approximation IC pattern. The method further includes checking whether the pattern approximation error is less than a user-defined threshold. If it is, the method further includes outputting the approximation IC pattern for subsequent fabrication. Otherwise, the method further includes splitting the IC pattern into a plurality of subparts, and recursively transforming each of the plurality of subparts.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 13, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jue-Chin Yu, Lun Hsieh, Pi-Tsung Chen, Shuo-Yen Chou, Ru-Gun Liu
  • Patent number: 8850366
    Abstract: A method for making a mask for an integrated circuit (IC) design includes receiving an IC design layout having a plurality IC features and performing a targeted-feature-surrounding (TFS) checking operation to identify a targeted-feature-surrounding-location (TFSL) in the IC design layout. The method also includes inserting a phase-bar (PB) to the TFSL, performing an optical proximity correction (OPC) to the IC design layout having the PB to form a modified IC design layout and providing the modified IC design layout for fabrication of the mask.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Gun Liu, Shuo-Yen Chou, Hoi-Tou Ng, Ken-Hsien Hsieh, Yi-Yin Chen