Patents by Inventor Shurong Yang

Shurong Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084466
    Abstract: An iridium-based catalyst and method of making the catalyst are described. The catalyst comprises a catalytic material comprising iridium oxide or a mixture of iridium and iridium oxide nanoplates. It may have a BET surface area of at least 50 m2/g and a pore volume of at least 0.10 cc/g. The nanoplates are less than 50 nm thick. The catalyst is made using organic and inorganic structure directing agents.
    Type: Application
    Filed: May 8, 2023
    Publication date: March 14, 2024
    Inventors: Zhanyong Li, Chunqing Liu, Shurong Yang, Dennis F. van der Vliet, Gavin P. Towler, Jeffery C. Bricker
  • Patent number: 11655350
    Abstract: A process is provided of treating a feed comprising polyethylene terephthalate comprising dissolving said feed in a polar solvent at a temperature between about 100 to 250° C. to produce a dissolved feed; then adding an anti-solvent that is less polar than said polar solvent followed by cooling a resulting mixture resulting in precipitation of purified polyethylene terephthalate and then separation of solid purified polyethylene terephthalate from remaining liquids.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: May 23, 2023
    Assignee: UOP LLC
    Inventors: Erin Broderick, Rodrigo Lobo, Francis Lupton, Shurong Yang, Raymond Shih, Andrea Bozzano, Hayim Abrevaya
  • Publication number: 20220332914
    Abstract: A process is provided of treating a feed comprising polyethylene terephthalate comprising dissolving said feed in a polar solvent at a temperature between about 100 to 250° C. to produce a dissolved feed; then adding an anti-solvent that is less polar than said polar solvent followed by cooling a resulting mixture resulting in precipitation of purified polyethylene terephthalate and then separation of solid purified polyethylene terephthalate from remaining liquids.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Erin Broderick, Rodrigo Lobo, Francis Lupton, Shurong Yang, Raymond Shih, Andrea Bozzano, Hayim Abrevaya
  • Patent number: 10472577
    Abstract: A catalyst composition comprising a support comprising a mixture of amorphous silica-alumina and non-zeolitic alumina comprising no more than 75 wt % amorphous silica-alumina and having a ratio of moles of silicon to moles of aluminum in the range of about 0.05 to about 0.50. A first hydrogenation metal comprising platinum, a second hydrogenation metal from Group VIIB or Group VIII of the Periodic Table other than platinum and an optional third metal from Group IA of the Periodic Table may be deposited on the support. The ratio of moles of silicon to the moles of the first hydrogenation metal, the second hydrogenation metal and the optional third metal on the support may be between about 15 and about 75.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 12, 2019
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Shurong Yang, Richard R. Willis, Gregory J. Gajda, Suheil F. Abdo, Lisa M. Knight, Hayim Abrevaya, John A. Petri
  • Publication number: 20180371335
    Abstract: A catalyst composition comprising a support comprising a mixture of amorphous silica-alumina and non-zeolitic alumina comprising no more than 75 wt % amorphous silica-alumina and having a ratio of moles of silicon to moles of aluminum in the range of about 0.05 to about 0.50. A first hydrogenation metal comprising platinum, a second hydrogenation metal from Group VIIB or Group VIII of the Periodic Table other than platinum and an optional third metal from Group IA of the Periodic Table may be deposited on the support. The ratio of moles of silicon to the moles of the first hydrogenation metal, the second hydrogenation metal and the optional third metal on the support may be between about 15 and about 75.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 27, 2018
    Inventors: Antoine Negiz, Shurong Yang, Richard R. Willis, Gregory J. Gajda, Suheil F. Abdo, Lisa M. Knight, Hayim Abrevaya
  • Patent number: 9574139
    Abstract: Processes for removing sulfur and nitrogen contaminants from hydrocarbon streams are described. The processes include contacting the hydrocarbon stream comprising the contaminant with lean halometallate ionic liquid an organohalide resulting in a mixture comprising the hydrocarbon and rich halometallate ionic liquid comprising the contaminant. The mixture is separated to produce a hydrocarbon effluent and a rich halometallate ionic liquid effluent comprising the rich halometallate ionic liquid comprising the contaminant.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: February 21, 2017
    Assignee: UOP LLC
    Inventors: Erin M. Broderick, Alakananda Bhattacharyya, Shurong Yang, Beckay J. Mezza
  • Patent number: 9475997
    Abstract: Processes for removing sulfur and nitrogen contaminants from hydrocarbon streams are described. The processes include contacting the hydrocarbon stream comprising the contaminant with lean carbenium pseudo ionic liquid or a combination of carbenium pseudo ionic liquid and ionic liquid to produce a mixture comprising the hydrocarbon and rich carbenium pseudo ionic liquid or carbenium pseudo ionic liquid and ionic liquid comprising the contaminant. The mixture is separated to produce a hydrocarbon effluent and a rich carbenium pseudo ionic liquid or carbenium pseudo ionic liquid and ionic liquid effluent comprising the rich carbenium pseudo ionic liquid or carbenium pseudo ionic liquid and ionic liquid comprising the contaminant.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: October 25, 2016
    Assignee: UOP LLC
    Inventors: Erin M. Broderick, Alakananda Bhattacharyya, Shurong Yang, Beckay J. Mezza
  • Publication number: 20160145500
    Abstract: Processes for removing sulfur and nitrogen contaminants from hydrocarbon streams are described. The processes include contacting the hydrocarbon stream comprising the contaminant with lean halometallate ionic liquid an organohalide resulting in a mixture comprising the hydrocarbon and rich halometallate ionic liquid comprising the contaminant. The mixture is separated to produce a hydrocarbon effluent and a rich halometallate ionic liquid effluent comprising the rich halometallate ionic liquid comprising the contaminant.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 26, 2016
    Inventors: Erin M. Broderick, Alakananda Bhattacharyya, Shurong Yang, Beckay J. Mezza
  • Publication number: 20160145501
    Abstract: Processes for removing sulfur and nitrogen contaminants from hydrocarbon streams are described. The processes include contacting the hydrocarbon stream comprising the contaminant with lean carbenium pseudo ionic liquid or a combination of carbenium pseudo ionic liquid and ionic liquid to produce a mixture comprising the hydrocarbon and rich carbenium pseudo ionic liquid or carbenium pseudo ionic liquid and ionic liquid comprising the contaminant. The mixture is separated to produce a hydrocarbon effluent and a rich carbenium pseudo ionic liquid or carbenium pseudo ionic liquid and ionic liquid effluent comprising the rich carbenium pseudo ionic liquid or carbenium pseudo ionic liquid and ionic liquid comprising the contaminant.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 26, 2016
    Inventors: Erin M. Broderick, Alakananda Bhattacharyya, Shurong Yang, Beckay J. Mezza
  • Publication number: 20080249197
    Abstract: A process for the selective oxidation of methane to methanol using a supported transition metal catalyst has been developed. Examples of the transition metals which can be used are copper and palladium, while an example of a support is silica. Optionally, the catalyst can contain a modifier component such as cesium. Generally the process involves contacting a gas stream, comprising methane, a solvent such as trifluoroacetic acid and an oxidizing agent such as air or hydrogen peroxide with the catalyst, at oxidation conditions to produce a methyl ester, e.g. methyl trifluoroacetate. Finally, the methyl ester is hydrolyzed to yield a methanol product stream.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Maureen L Bricker, Timothy A. Brandvold, Wensheng Chen, Shurong Yang, Joel T. Walenga