Patents by Inventor Shuuichi Ishizuka

Shuuichi Ishizuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8608901
    Abstract: In a substrate processing apparatus configured to perform a predetermined process on a target substrate accommodated in a process chamber, the process chamber is cleaned by alternately performing an operation of generating plasma of a gas containing oxygen within the process chamber, and an operation of generating plasma of a gas containing nitrogen within the process chamber.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: December 17, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Shuuichi Ishizuka, Masaru Sasaki, Tetsuro Takahashi, Koji Maekawa
  • Patent number: 8394231
    Abstract: That surface of an electrode plate 20 which is opposite to a susceptor 10 has a projection shape. The electrode plate 20 is fitted in an opening 26a of shield ring 26 at a projection 20a. At this time, the thickness of the projection 20a is approximately the same as the thickness of the shield ring 26. Accordingly, the electrode plate 20 and the shield ring 26 form substantially the same plane. The major surface of the projection 20a has a diameter 1.2 to 1.5 times the diameter of a wafer W. The electrode plate 20 is formed of, for example, SiC.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 12, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Koichi Takatsuki, Hikaru Yoshitaka, Shigeo Ashigaki, Yoichi Inoue, Takashi Akahori, Shuuichi Ishizuka, Syoichi Abe, Takashi Suzuki, Kohei Kawamura, Hidenori Miyoshi, Gishi Chung, Yasuhiro Oshima, Hiroyuki Takahashi
  • Patent number: 7915177
    Abstract: In the present invention, when a gate insulation film in a DRAM is formed, an oxide film constituting a base of the gate insulation film is plasma-nitrided. The plasma nitridation is performed with microwave plasma generated by using a plane antenna having a large number of through holes. Nitrogen concentration in the gate insulation film formed by the plasma nitridation is 5 to 20% in atomic percentage. Even without subsequent annealing, it is possible to effectively prevent a boron penetration phenomenon in the DRAM and to reduce traps in the film causing deterioration in driving capability of the device.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: March 29, 2011
    Assignee: Toyko Electron Limited
    Inventors: Tatsuo Nishita, Shuuichi Ishizuka, Yutaka Fujino, Toshio Nakanishi, Yoshihiro Sato
  • Patent number: 7842621
    Abstract: The total film thickness T1N of silicon oxynitride film and silicon oxide film remaining as its underlying layer is measured. A measurement target substrate is re-oxidized, and, after the re-oxidization, the total film thickness (T2N) of the silicon oxynitride film, silicon oxide film and silicon oxide film resulting from the re-oxidization on the target substrate is measured. Separately, a reference substrate provided with silicon oxide film is re-oxidized, and, after the re-oxidization, the total film thickness T2 of the silicon oxide film and silicon oxide film resulting from the re-oxidization on the reference substrate is measured. Re-oxidization rate reduction ratio RORR of the measurement target substrate is calculated by the following formula (1) from the values of total film thicknesses T1N, T2N and T2. The nitrogen concentration of the silicon oxynitride film of the target substrate is determined from the calculated re-oxidization rate reduction ratio RORR. RORR (%)={(T2?T2N)/(T2?T1N)}×100 (1).
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: November 30, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Jiro Katsuki, Tetsuro Takahashi, Shuuichi Ishizuka
  • Publication number: 20100239781
    Abstract: Disclosed is an in-chamber preprocessing method for carrying out preprocessing in a chamber prior to carrying out plasma nitridation processing of an oxide film, formed on a substrate, in the chamber. The method includes a step of supplying an oxygen-containing processing gas into the chamber and converting the gas into plasma, thereby generating an oxidizing plasma in the chamber (step 1), and a step of supplying a nitrogen-containing processing gas into the chamber and converting the gas into plasma, thereby generating a nitriding plasma in the chamber (step 2).
    Type: Application
    Filed: May 27, 2008
    Publication date: September 23, 2010
    Inventors: Masaki Sano, Shuuichi Ishizuka
  • Publication number: 20100154707
    Abstract: In a substrate processing apparatus configured to perform a predetermined process on a target substrate accommodated in a process chamber, the process chamber is cleaned by alternately performing an operation of generating plasma of a gas containing oxygen within the process chamber, and an operation of generating plasma of a gas containing nitrogen within the process chamber.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 24, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shuuichi Ishizuka, Masaru Sasaki, Tetsuro Takahashi, Koji Maekawa
  • Publication number: 20100130023
    Abstract: In the present invention, when a gate insulation film in a DRAM is formed, an oxide film constituting a base of the gate insulation film is plasma-nitrided. The plasma nitridation is performed with microwave plasma generated by using a plane antenna having a large number of through holes. Nitrogen concentration in the gate insulation film formed by the plasma nitridation is 5 to 20% in atomic percentage. Even without subsequent annealing, it is possible to effectively prevent a boron penetration phenomenon in the DRAM and to reduce traps in the film causing deterioration in driving capability of the device.
    Type: Application
    Filed: January 27, 2010
    Publication date: May 27, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tatsuo Nishita, Shuuichi Ishizuka, Yutaka Fujino, Toshio Nakanishi, Yoshihiro Sato
  • Patent number: 7695763
    Abstract: In a substrate processing apparatus configured to perform a predetermined process on a target substrate accommodated in a process chamber, the process chamber is cleaned by alternately performing an operation of generating plasma of a gas containing oxygen within the process chamber, and an operation of generating plasma of a gas containing nitrogen within the process chamber.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: April 13, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Shuuichi Ishizuka, Masaru Sasaki, Tetsuro Takahashi, Koji Maekawa
  • Patent number: 7674722
    Abstract: In the present invention, when a gate insulation film in a DRAM is formed, an oxide film constituting a base of the gate insulation film is plasma-nitrided. The plasma nitridation is performed with microwave plasma generated by using a plane antenna having a large number of through holes. Nitrogen concentration in the gate insulation film formed by the plasma nitridation is 5 to 20% in atomic percentage. Even without subsequent annealing, it is possible to effectively prevent a boron penetration phenomenon in the DRAM and to reduce traps in the film causing deterioration in driving capability of the device.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Tatsuo Nishita, Shuuichi Ishizuka, Yutaka Fujino, Toshio Nakanishi, Yoshihiro Sato
  • Publication number: 20090253221
    Abstract: The total film thickness T1N of silicon oxynitride film and silicon oxide film remaining as its underlying layer is measured. A measurement target substrate is re-oxidized, and, after the re-oxidization, the total film thickness (T2N) of the silicon oxynitride film, silicon oxide film and silicon oxide film resulting from the re-oxidization on the target substrate is measured. Separately, a reference substrate provided with silicon oxide film is re-oxidized, and, after the re-oxidization, the total film thickness T2 of the silicon oxide film and silicon oxide film resulting from the re-oxidization on the reference substrate is measured. Re-oxidization rate reduction ratio RORR of the measurement target substrate is calculated by the following formula (1) from the values of total film thicknesses T1N, T2N and T2. The nitrogen concentration of the silicon oxynitride film of the target substrate is determined from the calculated re-oxidization rate reduction ratio RORR. RORR (%)={(T2?T2N)/(T2?T1N)}×100 (1).
    Type: Application
    Filed: May 17, 2007
    Publication date: October 8, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jiro Katsuki, Tetsuro Takahashi, Shuuichi Ishizuka
  • Publication number: 20090239364
    Abstract: Disclosed is a method for forming a gate insulating film comprising an oxidation step wherein a silicon oxide film is formed by having an oxygen-containing plasma act on silicon in the surface of an object to be processed in a processing chamber of a plasma processing apparatus. The processing temperature in the oxidation step is more than 600° C. and not more than 1000° C., and the oxygen-containing plasma is formed by introducing an oxygen-containing processing gas containing at least a rare gas and an oxygen gas into the process chamber while introducing a high frequency wave or microwave into the process chamber through an antenna.
    Type: Application
    Filed: March 28, 2006
    Publication date: September 24, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tatsuo Nishita, Toshio Nakanishi, Shuuichi Ishizuka, Tomoe Nakayama, Yutaka Fujino
  • Publication number: 20070290247
    Abstract: In the present invention, when a gate insulation film in a DRAM is formed, an oxide film constituting a base of the gate insulation film is plasma-nitrided. The plasma nitridation is performed with microwave plasma generated by using a plane antenna having a large number of through holes. Nitrogen concentration in the gate insulation film formed by the plasma nitridation is 5 to 20% in atomic percentage. Even without subsequent annealing, it is possible to effectively prevent a boron penetration phenomenon in the DRAM and to reduce traps in the film causing deterioration in driving capability of the device.
    Type: Application
    Filed: October 27, 2005
    Publication date: December 20, 2007
    Inventors: Tatsuo Nishita, Shuuichi Ishizuka, Yutaka Fujino, Toshio Nakanishi, Yoshihiro Sato
  • Publication number: 20070181145
    Abstract: In a substrate processing apparatus configured to perform a predetermined process on a target substrate accommodated in a process chamber, the process chamber is cleaned by alternately performing an operation of generating plasma of a gas containing oxygen within the process chamber, and an operation of generating plasma of a gas containing nitrogen within the process chamber.
    Type: Application
    Filed: January 27, 2005
    Publication date: August 9, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shuuichi Ishizuka, Masaru Sasaki, Tetsuro Takahashi, Koji Maekawa
  • Publication number: 20070131171
    Abstract: That surface of an electrode plate 20 which is opposite to a susceptor 10 has a projection shape. The electrode plate 20 is fitted in an opening 26a of shield ring 26 at a projection 20a. At this time, die thickness of the projection 20a is approximately the same as the thickness of the shield ring 26. Accordingly, the electrode plate 20 and the shield ring 26 form substantially the same plane. The major surface of the projection 20a has a diameter 1.2 to 1.5 times the diameter of a wafer W. The electrode plate 20 is formed of, for example, SiC.
    Type: Application
    Filed: January 23, 2007
    Publication date: June 14, 2007
    Applicant: Tokyo Electron Limited
    Inventors: Koichi Takatsuki, Hikaru Yoshitaka, Shigeo Ashigaki, Yoichi Inoue, Takashi Akahori, Shuuichi Ishizuka, Syoichi Abe, Takashi Suzuki, Kohei Kawamura, Hidenori Miyoshi, Gishi Chung, Yasuhiro Oshima, Hiroyuki Takahashi
  • Publication number: 20040127033
    Abstract: That surface of an electrode plate 20 which is opposite to a susceptor 10 has a projection shape. The electrode plate 20 is fitted in an opening 26a of shield ring 26 at a projection 20a. At this time, the thickness of the projection 20a is approximately the same as the thickness of the shield ring 26. Accordingly, the electrode plate 20 and the shield ring 26 form substantially the same plane. The major surface of the projection 20a has a diameter 1.2 to 1.5 times the diameter of a wafer W. The electrode plate 20 is formed of, for example, SiC.
    Type: Application
    Filed: January 29, 2004
    Publication date: July 1, 2004
    Inventors: Koichi Takatsuki, Hiraku Yoshitaka, Shigeo Ashigaki, Yoichi Inoue, Takashi Akahori, Shuuichi Ishizuka, Syoichi Abe, Takashi Suzuki, Kohei Kawamura, Hidenori Miyoshi, Gishi Chung, Yasuhiro Oshima, Hiroyuki Takahashi
  • Publication number: 20040065344
    Abstract: Provided is a parallel-plate-type processing apparatus (10), which performs plasma CVD and includes a chamber (11) to be cleaned. To perform cleaning of the chamber (11), plasma of a gas including fluorine is generated outside the chamber (11), and supplied into the chamber (11). During the cleaning, an RF power is applied to electrode plates (12, 17) inside the chamber (11).
    Type: Application
    Filed: November 7, 2003
    Publication date: April 8, 2004
    Inventors: Shinsuke Oka, Osamu Yokoyama, Risa Nakase, Shuuichi Ishizuka