Patents by Inventor Shuuji Fujii

Shuuji Fujii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10835964
    Abstract: The disclosure provides a compact and low-cost gripper which allows an outside diameter of a piston to be increased. Provided is a gripper including a body case having, at one end, a cylinder part having a cylinder chamber which houses a piston so as to slide the piston along a central axis of the piston, and having, at the other end, a plurality of guide parts formed at regular intervals around the center axis and extending in a direction orthogonal to the center axis; a plurality of master jaws, on which top jaws can be removably mounted, guided by each of the guide parts; and a plunger having a plurality of interconnecting means which are respectively interconnected with each of the master jaws and slides along the central axis associated with a sliding operation of the piston.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 17, 2020
    Assignee: KITAGAWA IRON WORKS CO., LTD
    Inventors: Makoto Otsuka, Shuuji Fujii
  • Publication number: 20200023480
    Abstract: The disclosure provides a compact and low-cost gripper which allows an outside diameter of a piston to be increased. Provided is a gripper including a body case having, at one end, a cylinder part having a cylinder chamber which houses a piston so as to slide the piston along a central axis of the piston, and having, at the other end, a plurality of guide parts formed at regular intervals around the center axis and extending in a direction orthogonal to the center axis; a plurality of master jaws, on which top jaws can be removably mounted, guided by each of the guide parts; and a plunger having a plurality of interconnecting means which are respectively interconnected with each of the master jaws and slides along the central axis associated with a sliding operation of the piston.
    Type: Application
    Filed: October 5, 2017
    Publication date: January 23, 2020
    Applicant: KITAGAWA IRON WORKS CO., LTD
    Inventors: Makoto OTSUKA, Shuuji FUJII
  • Patent number: 10156517
    Abstract: This N2O analysis device is provided with: a light source (11) which radiates laser light onto an exhaust gas (5) containing N2O, H2O and CO2; a light receiver (13) which receives the laser light that has been radiated onto the exhaust gas (5); a light source control unit (14a) of a control device (14), which controls the wavelength of the laser light radiated by the light source (11) to between 3.84 ?m and 4.00 ?m; and a signal analyzing unit (14b) of the control device (14), which calculates the N2O concentration by means of infrared spectroscopy, using the laser light received by the light receiver (13) and the laser light controlled by the light source control unit (14a) of the control device (14).
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 18, 2018
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Osamu Tadanaga, Akio Tokura, Kenji Muta, Shuuji Fujii, Yoichiro Tsumura, Tatsuyuki Nishimiya
  • Patent number: 10101270
    Abstract: To provide an SO3 analysis device and analysis method capable of accurately and rapidly measuring the concentration of SO3 in exhaust gas without pre-processing. The present invention is provided with a light source (11) for radiating laser light (2) to exhaust gas (1) including SO3, CO2, and H2O, a photodetector (13) for receiving the laser light (2) radiated to the exhaust gas (1), a light source control unit (14a) of a control device (14) for controlling the wavelength of the laser light (2) radiated by the light source (11) so as to be 4.060 ?m to 4.192 ?m, and a concentration calculation unit (14b) of the control device (14) for calculating the SO3 concentration by infrared spectroscopy on the basis of the output from the photodetector (13) and a reference signal from the light source control unit (14a).
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: October 16, 2018
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Akio Tokura, Osamu Tadanaga, Kenji Muta, Shuuji Fujii, Yoichiro Tsumura, Tatsuyuki Nishimiya
  • Publication number: 20180095030
    Abstract: This N2O analysis device is provided with: a light source (11) which radiates laser light onto an exhaust gas (5) containing N2O, H2O and CO2; a light receiver (13) which receives the laser light that has been radiated onto the exhaust gas (5); a light source control unit (14a) of a control device (14), which controls the wavelength of the laser light radiated by the light source (11) to between 3.84 ?m and 4.00 ?m; and a signal analyzing unit (14b) of the control device (14), which calculates the N2O concentration by means of infrared spectroscopy, using the laser light received by the light receiver (13) and the laser light controlled by the light source control unit (14a) of the control device (14).
    Type: Application
    Filed: March 29, 2016
    Publication date: April 5, 2018
    Inventors: Osamu TADANAGA, Akio TOKURA, Kenji MUTA, Shuuji FUJII, Yoichiro TSUMURA, Tatsuyuki NISHIMIYA
  • Publication number: 20180080866
    Abstract: To provide an SO3 analysis device and analysis method capable of accurately and rapidly measuring the concentration of SO3 in exhaust gas without pre-processing. The present invention is provided with a light source (11) for radiating laser light (2) to exhaust gas (1) including SO3, CO2, and H2O, a photodetector (13) for receiving the laser light (2) radiated to the exhaust gas (1), a light source control unit (14a) of a control device (14) for controlling the wavelength of the laser light (2) radiated by the light source (11) so as to be 4.060 ?m to 4.192 ?m, and a concentration calculation unit (14b) of the control device (14) for calculating the SO3 concentration by infrared spectroscopy on the basis of the output from the photodetector (13) and a reference signal from the light source control unit (14a).
    Type: Application
    Filed: March 29, 2016
    Publication date: March 22, 2018
    Inventors: Akio TOKURA, Osamu TADANAGA, Kenji MUTA, Shuuji FUJII, Yoichiro TSUMURA, Tatsuyuki NISHIMIYA
  • Publication number: 20170312689
    Abstract: An exhaust gas treatment device capable of treating exhaust gas of a gas turbine or a gas engine includes an exhaust gas treatment catalyst comprising a perovskite composite oxide containing at least Ag and Dy in an A site and at least Mn in a B site.
    Type: Application
    Filed: September 16, 2015
    Publication date: November 2, 2017
    Inventors: Masatoshi KATSUKI, Shuuji FUJII, Kazuki NISHIZAWA
  • Patent number: 9308498
    Abstract: An exhaust gas treating catalyst further improved in denitrification performance is provided. It is an exhaust gas treating catalyst containing a complex oxide represented by the general formula ABO3, where the A-site is composed of a lanthanoid (La) and barium (Ba), and the B-site is composed of iron (Fe), niobium (Nb) and palladium (Pd).
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: April 12, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masatoshi Katsuki, Shuuji Fujii, Atsushi Ueda, Yusuke Yamada
  • Publication number: 20160001230
    Abstract: An exhaust gas treating catalyst further improved in denitrification performance is provided. It is an exhaust gas treating catalyst containing a complex oxide represented by the general formula ABO3, where the A-site is composed of a lanthanoid (La) and barium (Ba), and the B-site is composed of iron (Fe), niobium (Nb) and palladium (Pd).
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Masatoshi KATSUKI, Shuuji FUJII, Atsushi UEDA, Yusuke YAMADA
  • Patent number: 9174170
    Abstract: An exhaust gas treating catalyst further improved in denitrification performance is provided. It is an exhaust gas treating catalyst containing a complex oxide represented by the general formula ABO3, where the A-site is composed of a lanthanoid (La) and barium (Ba), and the B-site is composed of iron (Fe), niobium (Nb) and palladium (Pd).
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 3, 2015
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Masatoshi Katsuki, Shuuji Fujii, Atsushi Ueda, Yusuke Yamada
  • Patent number: 8506683
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: August 13, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8468807
    Abstract: An exhaust gas purification system which, in a wider temperature range, can reduce and remove nitrogen oxides in an exhaust gas by a reduction catalyst with the use of hydrogen as a reducing agent is provided. The exhaust gas purification system has an electronic control device (41) which controls an EGR valve (4) and an EGR pipe (5) so that the concentration of oxygen in the exhaust gas obtained from a data map based on the state of an engine (10) becomes less than a predetermined value, and which controls a microreactor (19) so that hydrogen is added to the exhaust gas when the concentration of oxygen in the exhaust gas is less than the predetermined value.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masatoshi Katsuki, Masazumi Tanoura, Shuuji Fujii, Daishi Ueno, Yuko Ujihara
  • Patent number: 8281577
    Abstract: An exhaust gas purification system, which upgrades exhaust gas purification while curtailing an increase in an operating cost, is disclosed. The exhaust gas purification system comprises an SCR catalyst for reducing and removing nitrogen oxides in an exhaust gas from an engine (10) by bringing the nitrogen oxides into contact with a reducing agent, oxidation catalysts (11, 17) for oxidizing gas components in the exhaust gas, a water electrolysis device (24) for producing oxygen by electrolyzing water, and an oxygen supply pipe (29) for supplying the oxygen produced by the water electrolysis device (24) to the exhaust gas.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 9, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masazumi Tanoura, Shuuji Fujii, Masatoshi Katsuki, Daishi Ueno, Yuko Ujihara
  • Patent number: 8231719
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 31, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Publication number: 20120014841
    Abstract: An exhaust gas treating catalyst further improved in denitrification performance is provided. It is an exhaust gas treating catalyst containing a complex oxide represented by the general formula ABO3, where the A-site is composed of a lanthanoid (La) and barium (Ba), and the B-site is composed of iron (Fe), niobium (Nb) and palladium (Pd).
    Type: Application
    Filed: April 28, 2009
    Publication date: January 19, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masatoshi Katsuki, Shuuji Fujii, Atsushi Ueda, Yusuke Yamada
  • Publication number: 20100287911
    Abstract: An exhaust gas purification system which, in a wider temperature range, can reduce and remove nitrogen oxides in an exhaust gas by a reduction catalyst with the use of hydrogen as a reducing agent is provided. The exhaust gas purification system has an electronic control device (41) which controls an EGR valve (4) and an EGR pipe (5) so that the concentration of oxygen in the exhaust gas obtained from a data map based on the state of an engine (10) becomes less than a predetermined value, and which controls a microreactor (19) so that hydrogen is added to the exhaust gas when the concentration of oxygen in the exhaust gas is less than the predetermined value.
    Type: Application
    Filed: September 3, 2008
    Publication date: November 18, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masatoshi Katsuki, Masazumi Tanoura, Shuuji Fujii, Daishi Ueno, Yuko Ujihara
  • Publication number: 20100282081
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Application
    Filed: June 11, 2010
    Publication date: November 11, 2010
    Inventors: Ryuji YOSHIYAMA, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Publication number: 20100242864
    Abstract: An exhaust gas purification system, which upgrades exhaust gas purification while curtailing an increase in an operating cost, is disclosed. The exhaust gas purification system comprises an SCR catalyst for reducing and removing nitrogen oxides in an exhaust gas from an engine (10) by bringing the nitrogen oxides into contact with a reducing agent, oxidation catalysts (11, 17) for oxidizing gas components in the exhaust gas, a water electrolysis device (24) for producing oxygen by electrolyzing water, and an oxygen supply pipe (29) for supplying the oxygen produced by the water electrolysis device (24) to the exhaust gas.
    Type: Application
    Filed: September 3, 2008
    Publication date: September 30, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Shuuji Fujii, Masatoshi Katsuki, Daishi Ueno, Yuko Ujihara
  • Publication number: 20090277330
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Application
    Filed: June 12, 2006
    Publication date: November 12, 2009
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura