Patents by Inventor Shuuji Okada

Shuuji Okada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10364480
    Abstract: A smelting method capable of obtaining an iron-nickel alloy having a high nickel grade of 4% or higher by effectively facilitating a reduction reaction of pellets formed using a nickel oxide ore as a raw material. The present invention is a method for smelting a nickel oxide ore, by which an iron-nickel alloy is obtained by forming pellets from a nickel oxide ore and reducing and heating the pellets. In the pellet production step S1, a mixture is obtained by mixing raw materials that contain at least a nickel oxide ore and a carbonaceous reducing agent. In the reduction step S2, a furnace floor carbonaceous reducing agent is laid on the floor of the smelting furnace in advance when placing the obtained pellets in the smelting furnace and the pellets are placed on the furnace floor carbonaceous reducing agent and then reduced and heated.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: July 30, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 10323297
    Abstract: Provided is a method for producing a pellet capable of suppressing heat shock-induced crack occurrence, when nickel oxide ores are made into pellets and placed in a reducing furnace in a smelting process. In the method for producing a pellet from a nickel oxide ore, a nickel oxide ore, a binder and a carbonaceous reducing agent are mixed, the mixture is made into a lump, and then the resulting lump is subjected to a preheat treatment at a temperature of 350° C. to 600° C. In this preheat treatment, the lump more preferably undergoes the preheat treatment at a temperature of 400° C. to 550° C.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: June 18, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 10301704
    Abstract: Provided is a smelting method whereby a reaction for reducing pellets, said pellet being formed by using a saprolite ore as a starting material, can be effectively conducted and thus an iron/nickel alloy having a nickel grade of, for example, 16% or greater can be obtained. The method comprises: a pellet production step (S1) for producing the pellets from the saprolite ore; and a reduction step (S2) for heating and reducing the obtained pellets in a smelting furnace. In the pellet production step (S1), at least the saprolite ore and a preset amount of a carbonaceous reducing agent are mixed together to produce the pellets. In the reduction step (S2), a hearth carbonaceous reducing agent is preliminarily spread on the hearth of the smelting furnace and the pellets produced above are placed on the hearth carbonaceous reducing agent and then subjected to a heat reduction treatment.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 28, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 10072313
    Abstract: Provided is a smelting method capable of effectively promoting a reduction reaction on pellets formed using nickel oxide ore as starting material to obtain a ferronickel alloy with a high nickel grade of at least 4%. The present invention is a method for smelting nickel oxide ore wherein ferronickel alloy with a nickel grade of at least 4%, the method comprising a pellet-producing step S1 for producing pellets from nickel oxide ore, and a reducing step S2 for reduction-heating of the obtained pellets in a smelting furnace. In the pellet-producing step S1, the pellets are produced by mixing nickel oxide ore with a specified amount of a carbonaceous reducing agent as starting materials. In the reducing step S2, the produced pellets are charged in a smelting furnace in which a carbonaceous reducing agent (furnace bottom carbonaceous reducing agent) has been spread over the entire furnace bottom and reduction-heating is performed.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 11, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 10041144
    Abstract: Provided is a method for smelting nickel oxide ore by which the occurrence of cracking due to heat shock can be suppressed when nickel oxide ore is pelletized and charged into a smelting step (reduction step). A method for smelting nickel oxide ore according to the present invention uses pellets of nickel oxide ore, the method being characterized by comprising a pellet production step S1 for producing pellets from nickel oxide ore, and a reduction step S2 for heating the resulting pellets at a predetermined reduction temperature in a reduction furnace, the reduction step S2 comprising preheating the pellets obtained in the pellet production step S1 to a temperature of 350 to 600° C. in the reduction furnace and thereafter charging the pellets into the reduction furnace and raising the temperature of the reduction furnace to the reduction temperature.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 7, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 10022799
    Abstract: The present invention provides a method for producing a silver powder, the method being capable of producing a silver powder with high productivity and at low cost, the silver powder having an average particle diameter of 0.3 to 2.0 ?m and a narrow particle size distribution, and provides a silver powder produced by the production method. According to the present invention, the method for producing a silver powder includes: quantitatively and continuously supplying each of a silver solution containing a silver complex and a reductant solution to a flow path; and quantitatively and continuously reducing a silver complex in a reaction solution obtained by mixing the silver solution with the reductant solution in the flow path, wherein the reaction solution is made to contain a dispersant, and also a silver concentration in the reaction solution is adjusted to be in a range of 5 to 75 g/L.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 17, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yoshihiro Okabe, Kenya Ito, Shuuji Okada, Masamu Nishimoto, Akihiro Murakami, Shintaro Ishikawa
  • Patent number: 9970085
    Abstract: Provided is a production method for producing pellets that are used for producing an iron-nickel alloy and that are produced by mixing at least a nickel oxide ore, a carbonaceous reducing agent, and an iron oxide and agglomerating the obtained mixtures, the method comprising: a step S11 for producing at least two types of mixtures having different mixing ratios of nickel oxide ore, carbonaceous reducing agent, and iron oxide; and a step S12 for forming pellets, which are agglomerates having a layered structure, by using the two or more types of mixtures such that the mixture with the highest content ratio of iron oxide, among the two or more types of mixtures forms the outermost layer.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 15, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 9938604
    Abstract: Provided is a method for producing pellets by which, when nickel oxide ore is being pelletized and smelted to produce ferronickel, which is an iron-nickel alloy, it is possible to allow the smelting reaction to proceed effectively. A method for producing pellets according to the present invention is for producing pellets which are used in producing iron-nickel alloy and which are produced by mixing raw materials including nickel oxide ore and agglomerating the resulting mixture, wherein the method comprises: a mixing step S11 for mixing at least nickel oxide ore, a carbonaceous reducing agent, and iron oxide to generate a mixture; and a pellet formation step S12 for agglomerating the resulting mixture and forming pellets. In the mixing step S11, the mixture is generated such that the total weight of nickel and iron accounts for 30 wt % or more of the total weight of the pellets formed.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 10, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20180030574
    Abstract: Provided is a smelting method whereby a reaction for reducing pellets, said pellet being formed by using a saprolite ore as a starting material, can be effectively conducted and thus an iron/nickel alloy having a nickel grade of, for example, 16% or greater can be obtained. The method comprises: a pellet production step (S1) for producing the pellets from the saprolite ore; and a reduction step (S2) for heating and reducing the obtained pellets in a smelting furnace. In the pellet production step (S1), at least the saprolite ore and a preset amount of a carbonaceous reducing agent are mixed together to produce the pellets. In the reduction step (S2), a hearth carbonaceous reducing agent is preliminarily spread on the hearth of the smelting furnace and the pellets produced above are placed on the hearth carbonaceous reducing agent and then subjected to a heat reduction treatment.
    Type: Application
    Filed: December 1, 2015
    Publication date: February 1, 2018
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170342514
    Abstract: Provided is a smelting method capable of effectively promoting a reduction reaction on pellets formed using nickel oxide ore as starting material to obtain a ferronickel alloy with a high nickel grade of at least 4%. The present invention is a method for smelting nickel oxide ore wherein ferronickel alloy with a nickel grade of at least 4%, the method comprising a pellet-producing step S1 for producing pellets from nickel oxide ore, and a reducing step S2 for reduction-heating of the obtained pellets in a smelting furnace. In the pellet-producing step S1, the pellets are produced by mixing nickel oxide ore with a specified amount of a carbonaceous reducing agent as starting materials. In the reducing step S2, the produced pellets are charged in a smelting furnace in which a carbonaceous reducing agent (furnace bottom carbonaceous reducing agent) has been spread over the entire furnace bottom and reduction-heating is performed.
    Type: Application
    Filed: September 15, 2015
    Publication date: November 30, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170306444
    Abstract: A smelting method capable of obtaining an iron-nickel alloy having a high nickel grade of 4% or higher by effectively facilitating a reduction reaction of pellets formed using a nickel oxide ore as a raw material. The present invention is a method for smelting a nickel oxide ore, by which an iron-nickel alloy is obtained by forming pellets from a nickel oxide ore and reducing and heating the pellets. In the pellet production step S1, a mixture is obtained by mixing raw materials that contain at least a nickel oxide ore and a carbonaceous reducing agent. In the reduction step S2, a furnace floor carbonaceous reducing agent is laid on the floor of the smelting furnace in advance when placing the obtained pellets in the smelting furnace and the pellets are placed on the furnace floor carbonaceous reducing agent and then reduced and heated.
    Type: Application
    Filed: September 15, 2015
    Publication date: October 26, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Patent number: 9752210
    Abstract: A method for smelting a nickel oxide ore, wherein the reduction step progresses effectively while maintaining the strength of the pellets, comprises: a pellet production step S1 for producing pellets from a nickel oxide ore; and a reduction step S2 for reducing and heating the obtained pellets in a smelting furnace at a predetermined reduction temperature. In the pellet production step S1, a mixture is formed by mixing materials including said nickel oxide ore without mixing a carbonaceous reducing agent, and the pellets are formed by agglomerating said mixture. In the reduction step S2, in charging the obtained pellets into the smelting furnace, a carbonaceous reducing agent is spread in advance over the furnace floor of the smelting furnace and the pellets are placed on the carbonaceous reducing agent, and the pellets are reduced and heated in a state where the pellets are covered by the carbonaceous reducing agent.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 5, 2017
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170211166
    Abstract: Provided is a method for producing pellets by which, when nickel oxide ore is being pelletized and smelted to produce ferronickel, which is an iron-nickel alloy, it is possible to allow the smelting reaction to proceed effectively. A method for producing pellets according to the present invention is for producing pellets which are used in producing iron-nickel alloy and which are produced by mixing raw materials including nickel oxide ore and agglomerating the resulting mixture, wherein the method comprises: a mixing step S11 for mixing at least nickel oxide ore, a carbonaceous reducing agent, and iron oxide to generate a mixture; and a pellet formation step S12 for agglomerating the resulting mixture and forming pellets. In the mixing step S11, the mixture is generated such that the total weight of nickel and iron accounts for 30 wt % or more of the total weight of the pellets formed.
    Type: Application
    Filed: June 30, 2015
    Publication date: July 27, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170204495
    Abstract: A method for smelting nickel oxide ore according to the present invention uses pellets of nickel oxide ore and is characterized by comprising: a pellet production step S1 for producing pellets from nickel oxide ore; a reduction step S2 for heating the resulting pellets at a predetermined reduction temperature in a reduction furnace to obtain a mixture of iron-nickel alloy and slag; and a separation step S3 for separating out and recovering the iron-nickel alloy form the resulting mixture, the separation step S3 comprising the creation of pulverized matter by pulverizing the mixture so that at least the slag becomes smaller than 2 mm, and sorting the resulting pulverized matter with a magnetic force of 300 to 600 gauss.
    Type: Application
    Filed: July 10, 2015
    Publication date: July 20, 2017
    Inventors: Junichi TAKAHASHI, Taku INOUE, Shuuji OKADA
  • Publication number: 20170204496
    Abstract: Provided is a method for smelting nickel oxide ore by which the occurrence of cracking due to heat shock can be suppressed when nickel oxide ore is pelletized and charged into a smelting step (reduction step). A method for smelting nickel oxide ore according to the present invention uses pellets of nickel oxide ore, the method being characterized by comprising a pellet production step S1 for producing pellets from nickel oxide ore, and a reduction step S2 for heating the resulting pellets at a predetermined reduction temperature in a reduction furnace, the reduction step S2 comprising preheating the pellets obtained in the pellet production step S1 to a temperature of 350 to 600° C. in the reduction furnace and thereafter charging the pellets into the reduction furnace and raising the temperature of the reduction furnace to the reduction temperature.
    Type: Application
    Filed: June 30, 2015
    Publication date: July 20, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170198372
    Abstract: A method for smelting a nickel oxide ore, wherein the reduction step progresses effectively while maintaining the strength of the pellets, comprises: a pellet production step S1 for producing pellets from a nickel oxide ore; and a reduction step S2 for reducing and heating the obtained pellets in a smelting furnace at a predetermined reduction temperature. In the pellet production step S1, a mixture is formed by mixing materials including said nickel oxide ore without mixing a carbonaceous reducing agent, and the pellets are formed by agglomerating said mixture. In the reduction step S2, in charging the obtained pellets into the smelting furnace, a carbonaceous reducing agent is spread in advance over the furnace floor of the smelting furnace and the pellets are placed on the carbonaceous reducing agent, and the pellets are reduced and heated in a state where the pellets are covered by the carbonaceous reducing agent.
    Type: Application
    Filed: June 30, 2015
    Publication date: July 13, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170152585
    Abstract: Provided is a production method for producing pellets that are used for producing an iron-nickel alloy and that are produced by mixing at least a nickel oxide ore, a carbonaceous reducing agent, and an iron oxide and agglomerating the obtained mixtures, the method comprising: a step S11 for producing at least two types of mixtures having different mixing ratios of said nickel oxide ore, said carbonaceous reducing agent, and said iron oxide; and a step S12 for forming pellets, which are agglomerates having a layered structure, by using said two or more types of mixtures such that the mixture with the highest content ratio of said iron oxide, among said two or more types of mixtures that have been obtained, forms the outermost layer.
    Type: Application
    Filed: June 30, 2015
    Publication date: June 1, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20170152584
    Abstract: Provided is a method for producing a pellet capable of suppressing heat shock-induced crack occurrence, when nickel oxide ores are made into pellets and placed in a reducing furnace in a smelting process. In the method for producing a pellet from a nickel oxide ore, a nickel oxide ore, a binder and a carbonaceous reducing agent are mixed, the mixture is made into a lump, and then the resulting lump is subjected to a preheat treatment at a temperature of 350° C. to 600° C. In this preheat treatment, the lump more preferably undergoes the preheat treatment at a temperature of 400° C. to 550° C.
    Type: Application
    Filed: June 30, 2015
    Publication date: June 1, 2017
    Inventors: Junichi Takahashi, Taku Inoue, Shuuji Okada
  • Publication number: 20150017465
    Abstract: The present invention provides a method for producing a silver powder, the method being capable of producing a silver powder with high productivity and at low cost, the silver powder having an average particle diameter of 0.3 to 2.0 ?m and a narrow particle size distribution, and provides a silver powder produced by the production method. According to the present invention, the method for producing a silver powder includes: quantitatively and continuously supplying each of a silver solution containing a silver complex and a reductant solution to a flow path; and quantitatively and continuously reducing a silver complex in a reaction solution obtained by mixing the silver solution with the reductant solution in the flow path, wherein the reaction solution is made to contain a dispersant, and also a silver concentration in the reaction solution is adjusted to be in a range of 5 to 75 g/L.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 15, 2015
    Inventors: Yoshihiro Okabe, Kenya Ito, Shuuji Okada, Masamu Nishimoto, Akihiro Murakami, Shintaro Ishikawa