Patents by Inventor Shwetak N. Patel

Shwetak N. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180188085
    Abstract: By monitoring pressure transients in a liquid within a liquid distribution system using only a single sensor, events such as the opening and closing of valves at specific fixtures are readily detected. The sensor, which can readily be coupled to a faucet bib, transmits an output signal to a computing device. Each such event can be identified by the device based by comparing characteristic features of the pressure transient waveform with previously observed characteristic features for events in the system. These characteristic features, which can include the varying pressure, derivative, and real Cepstrum of the pressure transient waveform, can be used to select a specific fixture where a valve open or close event has occurred. Flow to each fixture and leaks in the system can also be determined from the pressure transient signal. A second sensor disposed at a point disparate from the first sensor provides further event information.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: Shwetak N. PATEL, James A. FOGARTY, Jon E. FROEHLICH, Eric C. LARSON
  • Publication number: 20180136305
    Abstract: A system for monitoring electrical power usage in an electrical power infrastructure of a building. The system can include: a power consumption measurement device configured to be coupled to a first surface of the circuit breaker box, the circuit breaker box containing at least part of the electrical supply conductors for the electrical power infrastructure, the power consumption measurement device comprising one or more electrical current sensors; a first calibration device configured to be electrically coupled to the electrical power infrastructure, the first calibration device comprising one or more first calibration loads; and a calibration module configured to be performed using one or more processors and further configured to at least partially calibrate the power consumption measurement device using a Kalman filter and data obtained from the one or more electrical current sensors of the power consumption measurement device.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Applicant: Belkin International, Inc.
    Inventors: Yael Maguire, Karthik Yogeeswaran, Shwetak N. Patel, Matthew S. Reynolds
  • Patent number: 9971414
    Abstract: Examples of systems, devices, and methods are described herein that can provide for gesture recognition. Wireless communication signals are received from sources in an environment (e.g. cellular telephones, computers, etc.). Features of the wireless communication signals (e.g. Doppler shifts) are extracted and utilized to identify gestures. The use of wireless communication signals accordingly make possible gesture recognition in a whole-home environment that identifies gestures performed through walls or other obstacles.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: May 15, 2018
    Assignee: University of Washington Through Its Center For Commercialization
    Inventors: Shyamnath Gollakota, Shwetak N. Patel, Qifan Pu, Sidhant Gupta
  • Patent number: 9939299
    Abstract: By monitoring pressure transients in a liquid within a liquid distribution system using only a single sensor, events such as the opening and closing of valves at specific fixtures are readily detected. The sensor, which can readily be coupled to a faucet bib, transmits an output signal to a computing device. Each such event can be identified by the device based by comparing characteristic features of the pressure transient waveform with previously observed characteristic features for events in the system. These characteristic features, which can include the varying pressure, derivative, and real Cepstrum of the pressure transient waveform, can be used to select a specific fixture where a valve open or close event has occurred. Flow to each fixture and leaks in the system can also be determined from the pressure transient signal. A second sensor disposed at a point disparate from the first sensor provides further event information.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 10, 2018
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Shwetak N. Patel, James A. Fogarty, Jon E. Froehlich, Eric C. Larson
  • Publication number: 20180003746
    Abstract: A method of sensing electrical power being provided to a structure using a sensing device, a calibration device, and one or more processing modules. The sensing device can include one or more magnetic field sensors. The sensing device can be attached to a panel of a circuit breaker box. The panel of the circuit breaker box can overlie at least a part of one or more main electrical power supply lines for an electrical power infrastructure of a structure. The calibration device can include a load unit. The calibration device can be electrically coupled to the electrical power infrastructure of the structure. The method can include automatically calibrating the sensing device by determining a first transfer function in a piecewise manner based on a plurality of ordinary power consumption changes in the structure.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Applicant: Belkin International, Inc.
    Inventors: Shwetak N. Patel, Sidhant Gupta, Matthew S. Reynolds
  • Patent number: 9857449
    Abstract: A method of using a power consumption measurement device: determining at least two first current sensor readings from the one or more main electrical supply conductors; calibrating the power consumption measurement device, comprising applying a Kalman filter; electrically coupling a first calibration load to the electrical power infrastructure; determining at least one second current sensor reading from the one or more main electrical supply conductors; re-calibrating the power consumption measurement device, comprising applying the Kalman filter; uncoupling the first calibration load from the electrical power infrastructure; determining at least one third current sensor reading from the one or more main electrical supply conductors; and determining a first electrical power used by the electrical power infrastructure of the structure. Other embodiments are disclosed.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: January 2, 2018
    Assignee: BELKIN INTERNATIONAL, INC.
    Inventors: Yael G. Maguire, Karthik Yogeeswaran, Shwetak N. Patel, Matthew S. Reynolds
  • Patent number: 9766277
    Abstract: A system for sensing electrical power usage in an electrical power infrastructure of a structure. The system can include a sensing device configured to be attached to a panel of the circuit breaker box overlying at least part of the one or more main electrical power supply lines. The system also can include a calibration device configured to be electrically coupled to the electrical power infrastructure of the structure. The system further can include one or more processing modules configured to receive one or more output signals from the sensing device. The sensing device can be devoid of being electrically or physically coupled to the one or more main electrical power supply lines or the electrical power infrastructure when the sensing device is attached to the panel. Other embodiments are provided.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: September 19, 2017
    Assignee: BELKIN INTERNATIONAL, INC.
    Inventors: Shwetak N. Patel, Sidhant Gupta, Matthew S. Reynolds
  • Patent number: 9702123
    Abstract: Examples of automatic valve shutoff systems are described which may include an actuation device including an actuator and a valve attachment portion. The valve attachment portion may be configured for attachment with an existing valve in a fluid or compressible gas supply line. The system may further include a controller coupled to the actuation device, wherein the controller is configured to initiate a valve shutoff process in response to a wireless signal. Wake-up circuitry may be coupled to the controller and configured to monitor the supply line for vibrations and activate the controller in response to the vibrations.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: July 11, 2017
    Assignee: University of Washington Through Its Center For Commercialization
    Inventors: Shwetak N. Patel, Timothy B. Campbell, Eric C. Larson, Gabriel A. Cohn
  • Publication number: 20170131174
    Abstract: A system including a sensing device including a pressure sensor configured to measure pressure of water in a water system of a structure. The sensing device can be configured to generate pressure measurement data representing the pressure of the water as measured by the pressure sensor. The system also can include one or more processing units including one or more processors and one or more non-transitory storage media storing machine executable instructions configured when run on the one or more processors to perform detecting a non-cyclical pressure event corresponding to a water leak in the water system of the structure during a first time period based on an analysis of information including the pressure measurement data. The information analyzed in the analysis does not include any flow measurement data that represents a total amount of flow of the water in the water system of the structure during the first time period.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Applicant: BELKIN INTERNATIONAL, INC.
    Inventors: Miroslav Enev, Salil Banerjee, Shwetak N. Patel
  • Publication number: 20170131395
    Abstract: Examples described herein may detect gestures using multiple antennas and/or using reflected signals transmitted by the device which is also detecting the gesture. Multiple antenna detection may allow for classification of 3D gestures around a device. The use of reflected signals transmitted by the device itself may reduce a need for a separate signal source to be used for gesture detection. Accordingly, in some examples, devices (e.g. mobile phones) may detect gestures performed on or around the device without a need to transmit any signal specifically designed for gesture detection. Signals already transmitted by the device (e.g. GSM signals) may be used to detect the gestures.
    Type: Application
    Filed: June 25, 2015
    Publication date: May 11, 2017
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Matthew S. Reynolds, Chen Zhao, Ke-Yu Chen, Shwetak N. Patel
  • Publication number: 20170126282
    Abstract: Example systems described herein may include one or more sensor devices that may be powered by a power device. The power may be transmitted from the power device to the sensor devices through a waveguide (e.g. a body). In some examples, the power device may be implemented using a near-field communication device (e.g. a mobile phone configured for near-field communication (NFC)). Magnetic fields generated by near-field communication devices may be transduced into electric fields and applied to a waveguide (e.g. a body) for transmission to the sensor devices. The sensor devices may harvest power from the signals received from the waveguide (e.g. the body).
    Type: Application
    Filed: November 3, 2016
    Publication date: May 4, 2017
    Applicant: University of Washington
    Inventors: Joshua Fromm, Shwetak N. Patel, Matthew S. Reynolds
  • Patent number: 9618553
    Abstract: Systems and methods for sensing environmental changes using electromagnetic interference (EMI) signals are disclosed herein. An EMI monitoring system may be used to monitor an EMI signal of one or more light sources provided over a power line, e.g., in a home or building. The received EMI energy at the power line may be analyzed to detect variations in the EMI signature indicative of environmental changes occurring in the proximity of the light sources. Environmental changes that may be sensed include, but are not limited to, proximity, touch, motion, and temperature change.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 11, 2017
    Assignee: University of Washington Through Its Center For Commercialization
    Inventors: Shwetak N. Patel, Sidhant Gupta, Matthew S. Reynolds
  • Patent number: 9594098
    Abstract: A magnetic field sensing device can include two or more magnetic field sensors configured to detect a magnetic field in a current carrying conductor. The magnetic field sensing device also can include a phase detector electrically coupled to outputs of the two or more magnetic field sensors. The magnetic field sensing device further can include a phase indicator electrically coupled to the phase detector. The phase indictor can include a display that indicates when the two or more magnetic field sensors are in a position in relation to the current carrying conductor. Other embodiments are provided.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: March 14, 2017
    Assignee: Belkin International Inc.
    Inventors: Shwetak N. Patel, Sidhant Gupta, Matthew S. Reynolds, Karthik Yogeeswaran
  • Publication number: 20160287172
    Abstract: A wrist-worn device heart-monitoring device is presented. The wrist-worn heart-monitoring device includes a radial tonometer configured to output a pressure signal indicating a pulse pressure wave at a user's wrist, two or more electrodes configured to output an electrical signal indicating a user's heart has been commanded to contract, and a microphone configured to output an audio signal indicating a closing of a user's aortic valve. The wrist-worn heart-monitoring device further includes a pulse transit time monitor configured to calculate a pre-ejection period of the user's heart based on at least the pressure, electrical, and audio signals, and calculate a pulse transit time based on at least the pre-ejection period, the pressure signal, and the electrical signal.
    Type: Application
    Filed: June 25, 2015
    Publication date: October 6, 2016
    Inventors: Daniel Morris, Desney S. Tan, T. Scott Saponas, Shwetak N. Patel, Nicolas Villar, Gregory R. Smith, Sidhant Gupta, Gabriel Adam Cohn, David C. Kale, Sailaja Malladi, Ronald E. Paulsen
  • Publication number: 20160287103
    Abstract: A wrist-worn pressure sensing device includes a pressure sensor. The wrist-worn pressure sensing device also includes a first strap that sets the position of the pressure sensor on a wearer's wrist and a second strap that engages with the first strap to adjust the overall length of the strap without moving the set position of the pressure sensor on the wearer's wrist.
    Type: Application
    Filed: June 25, 2015
    Publication date: October 6, 2016
    Inventors: T. Scott Saponas, Sumit Basu, Daniel Morris, Sidhant Gupta, Sailaja Malladi, Desney S. Tan, Nicolas Villar, Shwetak N. Patel, Gabriel Adam Cohn, Jonathan Lester, Gregory R. Smith, Ronald E. Paulsen
  • Publication number: 20160287102
    Abstract: A system for transducing arterial pressure includes a one-piece flexible cap configured to fit around a flexible piezo-electric sensor that is configured to alter an internal resistance upon deflection. The flexible cap includes a deflection wall configured to deflect towards the flexible piezo-resistive sensor in proportion to pressure applied by the artery. A pressure-transducing medium is sealed between the one-piece flexible cap and the flexible piezo-resistive sensor, such that deflection of the deflection wall towards the flexible piezo-resistive sensor causes proportional deflection of the flexible piezo-resistive sensor.
    Type: Application
    Filed: June 25, 2015
    Publication date: October 6, 2016
    Inventors: T. Scott Saponas, Sumit Basu, Daniel Morris, Sidhant Gupta, Sailaja Malladi, Desney S. Tan, Nicolas Villar, Shwetak N. Patel
  • Publication number: 20160202340
    Abstract: A method of using a power consumption measurement device: determining at least two first current sensor readings from the one or more main electrical supply conductors; calibrating the power consumption measurement device, comprising applying a Kalman filter; electrically coupling a first calibration load to the electrical power infrastructure; determining at least one second current sensor reading from the one or more main electrical supply conductors; re-calibrating the power consumption measurement device, comprising applying the Kalman filter; uncoupling the first calibration load from the electrical power infrastructure; determining at least one third current sensor reading from the one or more main electrical supply conductors; and determining a first electrical power used by the electrical power infrastructure of the structure. Other embodiments are disclosed.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Applicant: Belkin International, Inc.
    Inventors: Yael G. Maguire, Karthik Yogeeswaran, Shwetak N. Patel, Matthew S. Reynolds
  • Patent number: 9385783
    Abstract: Disclosed is a system that uses existing power line infrastructure in a building as a distributed reception antenna capable of receiving signals from very low-power wireless sensors, thus allowing these sensors to be detected at ranges that are otherwise impractical with over-the-air reception. Also disclosed is a wireless sensor platform that is able to be sensed throughout a building with very low current draw. The disclosed technique may also be utilized to extend the range of mid-frequency consumer electronic devices by leveraging the power line as a reception antenna.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: July 5, 2016
    Assignees: Georgia Tech Research Corporation, University of Washington
    Inventors: Erich P. Stuntebeck, Thomas M. Robertson, Gregory D. Abowd, Shwetak N. Patel
  • Publication number: 20160154043
    Abstract: Activity sensing in the home has a variety of important applications, including healthcare, entertainment, home automation, energy monitoring and post-occupancy research studies. Many existing systems for detecting occupant activity require large numbers of sensors, invasive vision systems, or extensive installation procedures. Disclosed is an approach that uses a single plug-in sensor to detect a variety of electrical events throughout the home. This sensor detects the electrical noise on residential power tines created by the abrupt switching of electrical devices and the noise created by certain devices while in operation. Machine learning techniques are used to recognize electrically noisy events such as turning on or off a particular light switch, a television set, or an electric stove. The system has been tested to evaluate system performance over time and in different types of houses. Results indicate that various electrical events can be learned and classified with accuracies ranging from 85-90%.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 2, 2016
    Applicant: Georgia Tech Research Corporation
    Inventors: Shwetak N. Patel, Thomas M. Robertson, Gregory D. Abowd, Matthew S. Reynolds
  • Publication number: 20160146648
    Abstract: By monitoring pressure transients in a liquid within a liquid distribution system using only a single sensor, events such as the opening and closing of valves at specific fixtures are readily detected. The sensor, which can readily be coupled to a faucet bib, transmits an output signal to a computing device. Each such event can be identified by the device based by comparing characteristic features of the pressure transient waveform with previously observed characteristic features for events in the system. These characteristic features, which can include the varying pressure, derivative, and real Cepstrum of the pressure transient waveform, can be used to select a specific fixture where a valve open or close event has occurred. Flow to each fixture and leaks in the system can also be determined from the pressure transient signal. A second sensor disposed at a point disparate from the first sensor provides further event information.
    Type: Application
    Filed: January 29, 2016
    Publication date: May 26, 2016
    Inventors: Shwetak N. Patel, James A. Fogarty, Jon E. Froehlich, Eric C. Larson