Patents by Inventor Shyam Ramalingam

Shyam Ramalingam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11011420
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: May 18, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Patent number: 10847442
    Abstract: A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: November 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Gowrisankar Damarla, Shyam Ramalingam
  • Publication number: 20200235007
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 23, 2020
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Patent number: 10546777
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: January 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Patent number: 10319678
    Abstract: A three dimensional or stacked circuit device includes a conductive channel cap on a conductor channel. The channel cap can be created via selective deposition or other process to prevent polishing down the conductive material to isolate the contacts. The conductor channel extends through a deck of multiple tiers of circuit elements that are activated via a gate. The gate is activated by electrical potential in the conductor channel. The conductive cap on the conductor channel can electrically connect the conductor channel to a bitline or other signal line, and/or to another deck of multiple circuit elements.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Hongqi Li, Gowrisankar Damarla, Roger Lindsay, Zailong Bian, Jin Lu, Shyam Ramalingam, Prasanna Srinivasan
  • Publication number: 20180174902
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Application
    Filed: February 5, 2018
    Publication date: June 21, 2018
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Patent number: 9922875
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 20, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Patent number: 9911643
    Abstract: Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: March 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Gowrisankar Damarla, Robert J. Hanson, Jin Lu, Shyam Ramalingam
  • Publication number: 20170316974
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 2, 2017
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Patent number: 9754825
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: September 5, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Publication number: 20170133585
    Abstract: Exemplary embodiments of the present invention are directed towards a method for fabricating a semiconductor memory device comprising selectively depositing a material to form a cap above a recessed cell structure in order to prevent degradation of components inside the cell structure in oxidative or corrosive environments.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Muralikrishnan Balakrishnan, Zailong Bian, Gowrisankar Damarla, Hongqi Li, Jin Lu, Shyam Ramalingam, Xiaoyun Zhu
  • Patent number: 9577192
    Abstract: Exemplary embodiments of the present invention are directed towards a method for fabricating a semiconductor memory device comprising selectively depositing a material to form a cap above a recessed cell structure in order to prevent degradation of components inside the cell structure in oxidative or corrosive environments.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 21, 2017
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Muralikrishnan Balakrishnan, Zailong Bian, Gowrisankar Damarla, Hongqi Li, Jin Lu, Shyam Ramalingam, Xiaoyun Zhu
  • Publication number: 20160293482
    Abstract: Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Hongqi Li, Gowrisankar Damarla, Robert J. Hanson, Jin Lu, Shyam Ramalingam
  • Publication number: 20160247756
    Abstract: A three dimensional or stacked circuit device includes a conductive channel cap on a conductor channel. The channel cap can be created via selective deposition or other process to prevent polishing down the conductive material to isolate the contacts. The conductor channel extends through a deck of multiple tiers of circuit elements that are activated via a gate. The gate is activated by electrical potential in the conductor channel. The conductive cap on the conductor channel can electrically connect the conductor channel to a bitline or other signal line, and/or to another deck of multiple circuit elements.
    Type: Application
    Filed: December 22, 2015
    Publication date: August 25, 2016
    Inventors: Hongqi Li, Gowrisankar Damarla, Roger Lindsay, Zailong Bian, Jin Lu, Shyam Ramalingam, Prasanna Srinivasan
  • Patent number: 9391001
    Abstract: Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 12, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Gowrisankar Damarla, Robert J. Hanson, Jin Lu, Shyam Ramalingam
  • Patent number: 9263459
    Abstract: A three dimensional or stacked circuit device includes a conductive channel cap on a conductor channel. The channel cap can be created via selective deposition or other process to prevent polishing down the conductive material to isolate the contacts. The conductor channel extends through a deck of multiple tiers of circuit elements that are activated via a gate. The gate is activated by electrical potential in the conductor channel. The conductive cap on the conductor channel can electrically connect the conductor channel to a bitline or other signal line, and/or to another deck of multiple circuit elements.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: February 16, 2016
    Assignee: Intel Corporation
    Inventors: Hongqi Li, Gowrisankar Damarla, Roger Lindsay, Zailong Bian, Jin Lu, Shyam Ramalingam, Prasanna Srinivasan
  • Publication number: 20150340282
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Application
    Filed: July 31, 2015
    Publication date: November 26, 2015
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam
  • Publication number: 20150340247
    Abstract: Exemplary embodiments of the present invention are directed towards a method for fabricating a semiconductor memory device comprising selectively depositing a material to form a cap above a recessed cell structure in order to prevent degradation of components inside the cell structure in oxidative or corrosive environments.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 26, 2015
    Applicant: Sony Corporation
    Inventors: Muralikrishnan Balakrishnan, Zailong Bian, Gowrisankar Damarla, Hongqi Li, Jin Lu, Shyam Ramalingam, Xiaoyun Zhu
  • Publication number: 20150243583
    Abstract: A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Gowrisankar Damarla, Shyam Ramalingam
  • Patent number: 9099442
    Abstract: Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: August 4, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Shyam Ramalingam