Patents by Inventor Shyamlal Ramchandani

Shyamlal Ramchandani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210212582
    Abstract: The exemplified methods and systems facilitate the quantification of cardiac cycle-variability as a metric of signal quality of an acquired signal data set and the rejection, based on that quantification, of said acquired signal data set from one or more subsequent analyses that can predict and/or estimate a metric associated with the presence, non-presence, severity, and/or localization of abnormal cardiovascular conditions or disease, including, for example, but not limited to, coronary artery disease, abnormal left ventricular end-diastolic pressure disease (LVEDP), pulmonary hypertension and subcategories thereof, heart failure (HF), among others as discussed herein.
    Type: Application
    Filed: December 23, 2020
    Publication date: July 15, 2021
    Inventors: Farhad Fathieh, Michael Garrett, Timothy Burton, Shyamlal Ramchandani, Abhinav Doomra
  • Publication number: 20210128045
    Abstract: The present disclosure facilitates capture of biosignal such as biopotential signals in microvolts, or sub-microvolts, resolutions that are at, or significantly below, the noise-floor of conventional electrocardiographic and biosignal acquisition instruments. In some embodiments, the exemplified system disclosed herein facilitates the acquisition and recording of wide-band phase gradient signals (e.g., wide-band cardiac phase gradient signals, wide-band cerebral phase gradient signals) that are simultaneously sampled, in some embodiments, having a temporal skew less than about 1 ?s, and in other embodiments, having a temporal skew not more than about 10 femtoseconds. Notably, the exemplified system minimizes non-linear distortions (e.g., those that can be introduced via certain filters) in the acquired wide-band phase gradient signal so as to not affect the information therein.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Sunny Gupta, Don Crawford, Timothy William Fawcett Burton, Shyamlal Ramchandani, Kristine Canavan
  • Patent number: 10905345
    Abstract: The present disclosure uses physiological data, ECG signals as an example, to evaluate cardiac structure and function in mammals. Two approaches are presented, e.g., a model-based analysis and a space-time analysis. The first method uses a modified Matching Pursuit (MMP) algorithm to find a noiseless model of the ECG data that is sparse and does not assume periodicity of the signal. After the model is derived, various metrics and subspaces are extracted to image and characterize cardiovascular tissues using complex-sub-harmonic-frequencies (CSF) quasi-periodic and other mathematical methods. In the second method, space-time domain is divided into a number of regions, the density of the ECG signal is computed in each region and inputted into a learning algorithm to image and characterize the tissues.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: February 2, 2021
    Assignee: Analytics for Life Inc.
    Inventors: Sunny Gupta, Mohsen Najafi Yazdi, Timothy William Fawcett Burton, Shyamlal Ramchandani, Derek Vincent Exner
  • Publication number: 20200397324
    Abstract: The exemplified methods and systems facilitate one or more dynamical analyses that can characterize and identify synchronicity between acquired cardiac signals and photoplethysmographic signals to predict/estimate presence, non-presence, localization, and/or severity of abnormal cardiovascular conditions or disease, including, for example, but not limited to, coronary artery disease, heart failure (including but not limited to indicators of disease or conduction such as abnormal left ventricular end-diastolic pressure disease), and pulmonary hypertension, among others. In some embodiments, statistical properties of the synchronicity between cardiac signals and photoplethysmographic signals are evaluated. In some embodiments, statistical properties of histogram of synchronicity between cardiac signals and photoplethysmographic signals are evaluated.
    Type: Application
    Filed: March 26, 2020
    Publication date: December 24, 2020
    Inventors: Mehdi Paak, Timothy William Fawcett Burton, Shyamlal Ramchandani
  • Publication number: 20200397322
    Abstract: The exemplified methods and systems facilitate one or more dynamical analyses that can characterize and identify nonlinear dynamical properties (such as Lyapunov exponent (LE), correlation dimension, entropy (K2), or statistical and/or geometric properties derived from Poincaré maps, etc.) of biophysical signals such as photoplethysmographic signals and/or cardiac signals to predict presence and/or localization of a disease or condition, or indicator of one, including, for example, but not limited to, coronary artery disease, heart failure (including but not limited to elevated or abnormal left ventricular end-diastolic pressure disease) and pulmonary hypertension, among others.
    Type: Application
    Filed: March 26, 2020
    Publication date: December 24, 2020
    Inventors: Mehdi Paak, Timothy William Fawcett Burton, Shyamlal Ramchandani
  • Publication number: 20200335217
    Abstract: Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g.
    Type: Application
    Filed: June 1, 2020
    Publication date: October 22, 2020
    Inventors: Timothy Burton, Shyamlal Ramchandani, Sunny Gupta
  • Publication number: 20200229724
    Abstract: The present disclosure facilitates capture of biosignal such as biopotential signals in microvolts, or sub-microvolts, resolutions that are at, or significantly below, the noise-floor of conventional electrocardiographic and biosignal acquisition instruments. In some embodiments, the exemplified system disclosed herein facilitates the acquisition and recording of wide-band phase gradient signals (e.g., wide-band cardiac phase gradient signals, wide-band cerebral phase gradient signals) that are simultaneously sampled, in some embodiments, having a temporal skew less than about 1 ?s, and in other embodiments, having a temporal skew not more than about 10 femtoseconds. Notably, the exemplified system minimizes non-linear distortions (e.g., those that can be introduced via certain filters) in the acquired wide-band phase gradient signal so as to not affect the information therein.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 23, 2020
    Inventors: Sunny Gupta, Don Crawford, Timothy William Fawcett Burton, Shyamlal Ramchandani, Kristine Canavan
  • Publication number: 20200205739
    Abstract: Systems and methods for the quantification of the quality of an acquired signal are provided for assessment and for gating the acquired signal for subsequent analysis. A signal is acquired, and a determination is made in real-time if there is a problem with the acquisition (e.g., if the acquired signal is acceptable or unacceptable; is of sufficient quality for subsequent assessment). If there is a problem, output is provided via the systems and methods described herein to indicate that signal acquisition needs to be performed again (e.g., if the acquired signal is unacceptable, reject the acquired signal and acquire a new signal).
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Michael Garrett, Timothy William Fawcett Burton, Shyamlal Ramchandani, Abhinav Doomra
  • Publication number: 20200205745
    Abstract: The exemplified methods and systems facilitate the configuration and training of a neural network (e.g., a deep neural network, a convolutional neural network (CNN), etc.), or ensemble(s) thereof, with a biophysical signal data set to ascertain estimate for the presence or non-presence of disease or pathology in a subject as well as to assess and/or classify disease or pathology, including for example in some cases the severity of such disease or pathology, in a subject. In the context of the heart, the methods and systems described herein facilitate the configuration and training of a neural network, or ensemble(s) thereof, with a cardiac signal data set to ascertain estimate for the presence or non-presence of coronary artery disease or coronary pathology.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Ali Khosousi, Timothy William Fawcett Burton, Horace Gillins, Shyamlal Ramchandani, William Sanders, Ian Shadforth
  • Patent number: 10672518
    Abstract: Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 2, 2020
    Assignee: Analytics For Life Inc.
    Inventors: Timothy Burton, Shyamlal Ramchandani, Sunny Gupta
  • Publication number: 20200054232
    Abstract: The present disclosure facilitates the evaluation of wide-band phase gradient information of the heart tissue to assess, e.g., the presence of heart ischemic heart disease. Notably, the present disclosure provides an improved and efficient method to identify and risk stratify coronary stenosis of the heart using a high resolution and wide-band cardiac gradient obtained from the patient. The patient data are derived from the cardiac gradient waveforms across one or more leads, in some embodiments, resulting in high-dimensional data and long cardiac gradient records that exhibit complex nonlinear variability. Space-time analysis, via numeric wavelet operators, is used to study the morphology of the cardiac gradient data as a phase space dataset by extracting dynamical and geometrical properties from the phase space dataset.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 20, 2020
    Inventors: Sunny Gupta, Shyamlal Ramchandani, Timothy William Fawcett Burton, William Sanders, Ian Shadforth
  • Patent number: 10566092
    Abstract: Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: February 18, 2020
    Assignee: Analytics For Life Inc.
    Inventors: Timothy Burton, Shyamlal Ramchandani, Sunny Gupta
  • Patent number: 10566091
    Abstract: Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: February 18, 2020
    Assignee: Analytics For Life Inc.
    Inventors: Timothy Burton, Shyamlal Ramchandani, Sunny Gupta
  • Publication number: 20200046286
    Abstract: Systems to identify and risk stratify disease states, cardiac structural defects, functional cardiac deficiencies induced by teratogens and other toxic agents, pathological substrates, conduction delays and defects, and ejection fraction using single channel biological data obtained from the subject. A modified Matching Pursuit (MP) algorithm may be used to find a noiseless model of the data that is sparse and does not assume periodicity of the signal. After the model is derived, various metrics and subspaces are extracted to characterize the cardiac system. In another system, space-time domain is divided into a number of regions (which is largely determined by the signal length), the density of the signal is computed in each region and input to a learning algorithm to associate them to the desired cardiac dysfunction indicator target.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 13, 2020
    Inventors: Timothy Burton, Shyamlal Ramchandani, Matthew Howe-Patterson, Mohsen Yazdi, Sunny Gupta
  • Patent number: 10542897
    Abstract: The present disclosure facilitates capture of biosignal such as biopotential signals in microvolts, or sub-microvolts, resolutions that are at, or significantly below, the noise-floor of conventional electrocardiographic and biosignal acquisition instruments. In some embodiments, the exemplified system disclosed herein facilitates the acquisition and recording of wide-band phase gradient signals (e.g., wide-band cardiac phase gradient signals, wide-band cerebral phase gradient signals) that are simultaneously sampled, in some embodiments, having a temporal skew less than about 1 ?s, and in other embodiments, having a temporal skew not more than about 10 femtoseconds. Notably, the exemplified system minimizes non-linear distortions (e.g., those that can be introduced via certain filters) in the acquired wide-band phase gradient signal so as to not affect the information therein.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 28, 2020
    Assignee: Analytics For Life Inc.
    Inventors: Sunny Gupta, Don Crawford, Timothy Burton, Shyamlal Ramchandani, Kristine Canavan
  • Publication number: 20190384757
    Abstract: The exemplified methods and systems described herein facilitate the quantification and/or removal of asynchronous noise, such as muscle artifact noise contamination, to more accurately assess complex nonlinear variabilities in quasi-periodic biophysical-signal systems such as those in acquired cardiac signals, brain signals, etc.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 19, 2019
    Inventors: Michael Garrett, Timothy William Fawcett Burton, Shyamlal Ramchandani, Abhinav Doomra
  • Publication number: 20190365265
    Abstract: Phase space tomography methods and systems to facilitate the analysis and evaluation of complex, quasi-periodic system by generating computed phase-space tomographic images and mathematical features as a representation of the dynamics of the quasi-periodic cardiac systems. The computed phase-space tomographic images can be presented to a physician to assist in the assessment of presence or non-presence of disease. In some implementations, the phase space tomographic images are used as input to a trained neural network classifier configured to assess for presence or non-presence of pulmonary hypertension, including pulmonary arterial hypertension.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 5, 2019
    Inventors: Paul Grouchy, Meng Lei, Ian Shadforth, Sunny Gupta, Timothy Burton, Shyamlal Ramchandani
  • Publication number: 20190313926
    Abstract: The present disclosure uses physiological data, ECG signals as an example, to evaluate cardiac structure and function in mammals. Two approaches are presented, e.g., a model-based analysis and a space-time analysis. The first method uses a modified Matching Pursuit (MMP) algorithm to find a noiseless model of the ECG data that is sparse and does not assume periodicity of the signal. After the model is derived, various metrics and subspaces are extracted to image and characterize cardiovascular tissues using complex-sub-harmonic-frequencies (CSF) quasi-periodic and other mathematical methods. In the second method, space-time domain is divided into a number of regions, the density of the ECG signal is computed in each region and inputted into a learning algorithm to image and characterize the tissues.
    Type: Application
    Filed: February 13, 2019
    Publication date: October 17, 2019
    Inventors: Sunny Gupta, Mohsen Najafi Yazdi, Timothy William Fawcett Burton, Shyamlal Ramchandani, Derek Vincent Exner
  • Patent number: 10441216
    Abstract: Methods to identify and risk stratify disease states, cardiac structural defects, functional cardiac deficiencies induced by teratogens and other toxic agents, pathological substrates, conduction delays and defects, and ejection fraction using single channel biological data obtained from the subject. A modified Matching Pursuit (MP) algorithm may be used to find a noiseless model of the data that is sparse and does not assume periodicity of the signal. After the model is derived, various metrics and subspaces are extracted to characterize the cardiac system. In another method, space-time domain is divided into a number of regions (which is largely determined by the signal length), the density of the signal is computed in each region and input to a learning algorithm to associate them to the desired cardiac dysfunction indicator target.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: October 15, 2019
    Assignee: ANALYTICS FOR LIFE INC.
    Inventors: Timothy Burton, Shyamlal Ramchandani, Matthew Howe-Patterson, Mohsen Yazdi, Sunny Gupta
  • Patent number: 10383535
    Abstract: Methods and systems for evaluating the electrical activity of the heart to identify novel ECG patterns closely linked to the subsequent development of serious heart rhythm disturbances and fatal cardiac events. Two approaches are describe, for example a model-based analysis and space-time analysis, which are used to study the dynamical and geometrical properties of the ECG data. In the first a model is derived using a modified Matching Pursuit (MMP) algorithm. Various metrics and subspaces are extracted to characterize the risk for serious heart rhythm disturbances, sudden cardiac death, other modes of death, and all-cause mortality linked to different electrical abnormalities of the heart. In the second method, space-time domain is divided into a number of regions (e.g., 12 regions), the density of the ECG signal is computed in each region and input to a learning algorithm to associate them with these events.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: August 20, 2019
    Assignee: Analytics For Life Inc.
    Inventors: Sunny Gupta, Mohsen Najafi Yazdi, Timothy William Fawcett Burton, Shyamlal Ramchandani, Derek Vincent Exner