Patents by Inventor Shyh-Horng Yang

Shyh-Horng Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105851
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first well region and a second well region in a substrate. The method includes forming a third well region in the substrate and between the first well region and the second well region. The method includes forming a deep well region in the substrate and under the first well region and the third well region. The method includes partially removing the substrate to form a first fin, a second fin, and a third fin in the first well region, the second well region, and the third well region respectively. The method includes forming a first epitaxial structure, a second epitaxial structure, and a third epitaxial structure in the first recess, the second recess, and the third recess respectively.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 28, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiefeng Jeff LIN, Chen-Hua TSAI, Shyh-Horng YANG
  • Patent number: 11489054
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yong-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 10978355
    Abstract: A device includes a semiconductor substrate, isolation regions in the semiconductor substrate, and a Fin Field-Effect Transistor (FinFET). The FinFET includes a channel region over the semiconductor substrate, a gate dielectric on a top surface and sidewalls of the channel region, a gate electrode over the gate dielectric, a source/drain region, and an additional semiconductor region between the source/drain region and the channel region. The channel region and the additional semiconductor region are formed of different semiconductor materials, and are at substantially level with each other.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20210083063
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 18, 2021
    Inventors: Yong-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 10840346
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yong-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20200006505
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Yong-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 10516024
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: December 24, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yong-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20180269112
    Abstract: A device includes a semiconductor substrate, isolation regions in the semiconductor substrate, and a Fin Field-Effect Transistor (FinFET). The FinFET includes a channel region over the semiconductor substrate, a gate dielectric on a top surface and sidewalls of the channel region, a gate electrode over the gate dielectric, a source/drain region, and an additional semiconductor region between the source/drain region and the channel region. The channel region and the additional semiconductor region are formed of different semiconductor materials, and are at substantially level with each other.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 20, 2018
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20180226479
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Yong-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 10014223
    Abstract: A device includes a semiconductor substrate, isolation regions in the semiconductor substrate, and a Fin Field-Effect Transistor (FinFET). The FinFET includes a channel region over the semiconductor substrate, a gate dielectric on a top surface and sidewalls of the channel region, a gate electrode over the gate dielectric, a source/drain region, and an additional semiconductor region between the source/drain region and the channel region. The channel region and the additional semiconductor region are formed of different semiconductor materials, and are at substantially level with each other.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: July 3, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 9941368
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: April 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yonag-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 9634104
    Abstract: A method of fabricating a fin field effect transistor (FinFET) includes forming a first fin and a second fin extending upward from a substrate major surface to a first height, forming an insulation layer comprising a top surface extending upward from the substrate major surface to a second height less than the first height, selectively forming a bulbous epitaxial layer covering a portion of each fin, annealing the substrate to convert at least a portion of the bulbous epitaxial layer to silicide and depositing a metal layer at least in the cavity. The first fin and the second fin are adjacent. A portion of the first fin and a portion of the second fin extend beyond the top surface of the insulation layer. The bulbous epitaxial layer defines an hourglass shaped cavity between adjacent fins.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: April 25, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Donald Y. Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20170084709
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Inventors: Yonag-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 9514991
    Abstract: A FinFET device and a method for fabricating a FinFET device are disclosed. An exemplary method of fabricating a FINFET device includes providing a substrate including a fin structure including a plurality of fins and shallow trench isolation (STI) features between each fin of the fin structure. A first gate structure is formed over the fin structure. First gate spacers are formed on sidewalls of the first gate structure. The first gate spacers are removed while leaving portions of the first gate spacers within corners where the fin structure and the first gate structure meet. Second gate spacers are formed on sidewalls of the first gate structure. A dielectric layer is formed over the fin structure, the first gate structure, and the second gate spacers. The first gate structure and the portions of the first gate spacers are removed, thereby exposing sidewalls of the second gate spacers.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: December 6, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 9515167
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: December 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yonag-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 9431397
    Abstract: A device includes a wafer substrate including an isolation feature, at least two fin structures embedded in the isolation feature, and at least two gate stacks disposed around the two fin structures respectively. A first inter-layer dielectric (ILD) layer is disposed between the two gate stacks, with a dish-shaped recess formed therebetween, such that a bottom surface of the recess is below the top surface of the adjacent two gate stacks. A second ILD layer is disposed over the first ILD layer, including in the dish-shaped recess. The second ILD includes nitride material; the first ILD includes oxide material.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: August 30, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Patent number: 9317647
    Abstract: A method of designing a circuit includes receiving a circuit design, and determining a temperature change of at least on back end of line (BEOL) element of the circuit design. The method further includes identifying at least one isothermal region within the circuit design; and determining, using a processor, a temperature increase of at least one front end of line (FEOL) device within the at least one isothermal region. The method further includes combining the temperature change of the at least one BEOL element with the temperature change of the at least one FEOL device, and comparing the combined temperature change with a threshold value.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 19, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shyh-Horng Yang, Chung-Kai Lin, Chung-Hsing Wang, Kuo-Nan Yang, Shou-En Liu, Jhong-Sheng Wang, Tan-Li Chou
  • Publication number: 20160043002
    Abstract: A device includes a semiconductor substrate, isolation regions in the semiconductor substrate, and a Fin Field-Effect Transistor (FinFET). The FinFET includes a channel region over the semiconductor substrate, a gate dielectric on a top surface and sidewalls of the channel region, a gate electrode over the gate dielectric, a source/drain region, and an additional semiconductor region between the source/drain region and the channel region. The channel region and the additional semiconductor region are formed of different semiconductor materials, and are at substantially level with each other.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20160035625
    Abstract: A FinFET device and a method for fabricating a FinFET device are disclosed. An exemplary method of fabricating a FINFET device includes providing a substrate including a fin structure including a plurality of fins and shallow trench isolation (STI) features between each fin of the fin structure. A first gate structure is formed over the fin structure. First gate spacers are formed on sidewalls of the first gate structure. The first gate spacers are removed while leaving portions of the first gate spacers within corners where the fin structure and the first gate structure meet. Second gate spacers are formed on sidewalls of the first gate structure. A dielectric layer is formed over the fin structure, the first gate structure, and the second gate spacers. The first gate structure and the portions of the first gate spacers are removed, thereby exposing sidewalls of the second gate spacers.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Chih-Wei Kuo, Yuan-Shun Chao, Hou-Yu Chen, Shyh-Horng Yang
  • Publication number: 20160013297
    Abstract: Embodiments include Multiple Gate Field-Effect Transistors (MuGFETs) and methods of forming them. In an embodiment, a structure includes a substrate, a fin, masking dielectric layer portions, and a raised epitaxial lightly doped source/drain (LDD) region. The substrate includes the fin. The masking dielectric layer portions are along sidewalls of the fin. An upper portion of the fin protrudes from the masking dielectric layer portions. A first spacer is along a sidewall of a gate structure over a channel region of the fin. A second spacer is along the first spacer. The raised epitaxial LDD region is on the upper portion of the fin, and the raised epitaxial LDD region adjoins a sidewall of the first spacer and is disposed under the second spacer. The raised epitaxial LDD region extends from the upper portion of the fin in at least two laterally opposed directions and a vertical direction.
    Type: Application
    Filed: September 25, 2015
    Publication date: January 14, 2016
    Inventors: Yonag-Yan Lu, Hou-Yu Chen, Shyh-Horng Yang