Patents by Inventor Shyh-Wei Wang

Shyh-Wei Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8404544
    Abstract: A method for manufacturing the integrated circuit device comprises providing a substrate having a first region, a second region, and a third region. A first gate stack, a second gate stack, and a third gate stack are formed over the substrate in the first region, the second region, and the third region, respectively. The first gate stack, the second gate stack, and the third gate stack comprise a sacrificial layer over a first dielectric layer. The first gate stack and the second gate stack are removed and a second dielectric layer is formed in the first region and the second region. The portion of second dielectric layer in the first region is transformed into a third dielectric layer by a treatment.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jin-Mu Yin, Shyh-Wei Wang, Yen-Ming Chen
  • Patent number: 8362573
    Abstract: An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is spaced from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. The first metallic layer is electrically coupled with the first source region. The first metallic layer and the first diffusion area overlap with a first distance. A second metallic layer is electrically coupled with the first drain region and the second drain region. The second metallic layer and the first diffusion area overlap with a second distance. The first distance is larger than the second distance.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Cheng Wu, Ali Keshavarzi, Ka Hing Fung, Ta-Pen Guo, Jiann-Tyng Tzeng, Yen-Ming Chen, Shyue-Shyh Lin, Shyh-Wei Wang, Sheng-Jier Yang, Hsiang-Jen Tseng, David B. Scott, Min Cao
  • Patent number: 8283734
    Abstract: An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. An exemplary method includes providing a substrate; forming a first gate over the substrate for a first device having a first threshold voltage characteristic, the first gate including a first material having a first-type work function; forming a second gate over the substrate for a second device having a second threshold voltage characteristic that is greater than the first threshold voltage characteristic, the second gate including a second material having a second-type work function that is opposite the first-type work function; and configuring the first device and the second device as a same channel type device.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 9, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yu Chiang, Da-Wen Lin, Shyh-Wei Wang
  • Patent number: 8143680
    Abstract: A gated-diode semiconductor device or similar component and a method of fabricating the device. The device features a gate structure disposed on a substrate over a channel and adjacent a source and a drain. The top of the source or drain region, or both, are formed so as to be at a higher elevation, in whole or in part, than the bottom of the gate structure. This configuration may be achieved by overlaying the gate structure and substrate with a profile layer that guides a subsequent etch process to create a sloped profile. The source and drain, if both are present, may be symmetrical or asymmetrical. This configuration significantly reduces dopant encroachment and, as a consequence, reduces junction leakage.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 27, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Da-Wen Lin, Ying-Shiou Lin, Shyh-Wei Wang, Li-Ping Huang, Ying-Keung Leung, Carlos H. Diaz
  • Publication number: 20120056276
    Abstract: The present disclosure provides a semiconductor device and methods of making wherein the semiconductor device has strained asymmetric source and drain regions. A method of fabricating the semiconductor device includes providing a substrate and forming a poly gate stack on the substrate. A dopant is implanted in the substrate at an implant angle ranging from about 10° to about 25° from perpendicular to the substrate. A spacer is formed adjacent the poly gate stack on the substrate. A source region and a drain region are etched in the substrate. A strained source layer and a strained drain layer are respectively deposited into the etched source and drain regions in the substrate, such that the source region and the drain region are asymmetric with respect to the poly gate stack. The poly gate stack is removed from the substrate and a high-k metal gate is formed using a gate-last process where the poly gate stack was removed.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 8, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Chun-Fai Cheng, Ka-Hing Fung, Shyh-Wei Wang, Chin-Te Su
  • Publication number: 20110291197
    Abstract: An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is spaced from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. The first metallic layer is electrically coupled with the first source region. The first metallic layer and the first diffusion area overlap with a first distance. A second metallic layer is electrically coupled with the first drain region and the second drain region. The second metallic layer and the first diffusion area overlap with a second distance. The first distance is larger than the second distance.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Cheng WU, Ali KESHAVARZI, Ka Hing FUNG, Ta-Pen GUO, Jiann-Tyng TZENG, Yen-Ming CHEN, Shyue-Shyh LIN, Shyh-Wei WANG, Sheng-Jier YANG, Hsiang-Jen TSENG, David B. SCOTT, Min CAO
  • Publication number: 20110248351
    Abstract: An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. An exemplary method includes providing a substrate; forming a first gate over the substrate for a first device having a first threshold voltage characteristic, the first gate including a first material having a first-type work function; forming a second gate over the substrate for a second device having a second threshold voltage characteristic that is greater than the first threshold voltage characteristic, the second gate including a second material having a second-type work function that is opposite the first-type work function; and configuring the first device and the second device as a same channel type device.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Yu Chiang, Da-Wen Lin, Shyh-Wei Wang
  • Publication number: 20100237441
    Abstract: A gated-diode semiconductor device or similar component and a method of fabricating the device. The device features a gate structure disposed on a substrate over a channel and adjacent a source and a drain. The top of the source or drain region, or both, are formed so as to be at a higher elevation, in whole or in part, than the bottom of the gate structure. This configuration may be achieved by overlaying the gate structure and substrate with a profile layer that guides a subsequent etch process to create a sloped profile. The source and drain, if both are present, may be symmetrical or asymmetrical. This configuration significantly reduces dopant encroachment and, as a consequence, reduces junction leakage.
    Type: Application
    Filed: May 12, 2010
    Publication date: September 23, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Da-Wen Lin, Ying-Shiou Lin, Shyh-Wei Wang, Li-Ping Huang, Ying-Keung Leung, Carlis H. Diaz
  • Patent number: 7732877
    Abstract: A gated-diode semiconductor device or similar component and a method of fabricating the device. The device features a gate structure disposed on a substrate over a channel and adjacent a source and a drain. The top of the source or drain region, or both, are formed so as to be at a higher elevation, in whole or in part, than the bottom of the gate structure. This configuration may be achieved by overlaying the gate structure and substrate with a profile layer that guides a subsequent etch process to create a sloped profile. The source and drain, if both are present, may be symmetrical or asymmetrical. This configuration significantly reduces dopant encroachment and, as a consequence, reduces junction leakage.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: June 8, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Da-Wen Lin, Ying-Shiou Lin, Shyh-Wei Wang, Li-Ping Huang, Ying-Keung Leung, Carlos H. Diaz
  • Publication number: 20080290380
    Abstract: A semiconductor device includes a substrate and a gate formed on the substrate. A gate spacer is formed next to the gate. The gate spacer has a height greater than the height of the gate. A method of forming a semiconductor device includes providing a substrate with a gate layer. A hard mask layer is formed over the gate layer, and both layers are then etched using a pattern, forming a gate and a hard mask. A spacer layer is then deposited over the substrate, gate, and hard mask. The spacer layer is etched to form a gate spacer next to the gate. The hard mask is then removed.
    Type: Application
    Filed: May 24, 2007
    Publication date: November 27, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Ming Sheu, Da-Wen Lin, Shyh-Wei Wang
  • Publication number: 20080237746
    Abstract: A gated-diode semiconductor device or similar component and a method of fabricating the device. The device features a gate structure disposed on a substrate over a channel and adjacent a source and a drain. The top of the source or drain region, or both, are formed so as to be at a higher elevation, in whole or in part, than the bottom of the gate structure. This configuration may be achieved by overlaying the gate structure and substrate with a profile layer that guides a subsequent etch process to create a sloped profile. The source and drain, if both are present, may be symmetrical or asymmetrical. This configuration significantly reduces dopant encroachment and, as a consequence, reduces junction leakage.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Inventors: Da-Wen Lin, Ying-Shiou Lin, Shyh-Wei Wang, Li-Ping Huang, Ying-Keung Leung, Carlos H. Diaz
  • Patent number: 6461897
    Abstract: A multichip module comprises at least two semiconductor chips wherein each has a row of bonding pads formed on the active surface thereof and disposed along one side edge thereof. The semiconductor chips are mounted to a substrate in a stacking arrangement wherein the upper chip is attached to the active surface of the lower chip in a manner that no portion of the upper chip interferes with a vertical line of sight of each bond pad of the lower chip to permit wire bonding thereof. Therefore, all semiconductor chips can be wire bonded simultaneously after stacking the chips on the substrate. This allows wire bonding of all chips to be completed in a single step so as to increase UPH (unit per hour), thereby reducing cost for manufacturing the MCM.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: October 8, 2002
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chun Hung Lin, Kuang-Hui Chen, Shyh-Wei Wang, Su Tao
  • Publication number: 20020127779
    Abstract: A chip scale package mainly comprises two elastomer pads respectively interposed between a substrate and a semiconductor chip. Each of the elastomer pads is respectively situated on the flank of a slot centrally defined in the substrate, and keeps a predetermined distance from the slot. The semiconductor chip is attached onto the upper surface of the substrate through the two elastomer pads wherein bonding pads formed on the semiconductor chip are exposed from the slot of the substrate. The upper surface of the substrate is provided with a plurality of solder pads and leads. Each of the leads has one end electrically connected to a corresponding solder pad, and the other end electrically connected to a corresponding bonding pad of the semiconductor chip. The substrate has a plurality of through-holes formed corresponding to the solder pads such that each solder pad has a portion exposed within the through-hole for mounting a solder ball.
    Type: Application
    Filed: March 9, 2001
    Publication date: September 12, 2002
    Inventors: Ching-Huei Su, Chih-Chang Yang, Shyh-Wei Wang, Chih-Sien Yeh
  • Patent number: 6359340
    Abstract: A multichip module has at least two semiconductor chips wherein each has a row of bonding pads formed on the active surface thereof and disposed along one side edge thereof. In some embodiments, the semiconductor chips may have a plurality of bonding pads along only two mutually perpendicular side edges thereof. The semiconductor chips are mounted to a substrate in a stacking arrangement wherein the upper chip is attached to the active surface of the lower chip in a manner that no portion of the upper chip interferes with a vertical line of sight of each bonding pad of the lower chip to permit wire bonding thereof. Therefore, all semiconductor chips can be wire bonded simultaneously after stacking the chips on the substrate. This allows wire bonding of all chips to be completed in a single step so as to increase UPH (unit per hour), thereby reducing cost for manufacturing the MCM.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: March 19, 2002
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chun Hung Lin, Kuang-Hui Chen, Shyh-Wei Wang, Su Tao, Jian Wen Chen
  • Publication number: 20010019170
    Abstract: A multichip module comprises at least two semiconductor chips wherein each has a row of bonding pads formed on the active surface thereof and disposed along one side edge thereof. The semiconductor chips are mounted to a substrate in a stacking arrangement wherein the upper chip is attached to the active surface of the lower chip in a manner that no portion of the upper chip interferes with a vertical line of sight of each bond pad of the lower chip to permit wire bonding thereof. Therefore, all semiconductor chips can be wire bonded simultaneously after stacking the chips on the substrate. This allows wire bonding of all chips to be completed in a single step so as to increase UPH (unit per hour), thereby reducing cost for manufacturing the MCM.
    Type: Application
    Filed: May 15, 2001
    Publication date: September 6, 2001
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chun Hung Lin, Kuang-Hui Chen, Shyh-Wei Wang, Su Tao
  • Patent number: 6252305
    Abstract: A multichip module comprises at least two semiconductor chips wherein each has a row of bonding pads formed on the active surface thereof and disposed along one side edge thereof. The semiconductor chips are mounted to a substrate in a stacking arrangement wherein the upper chip is attached to the active surface of the lower chip in a manner that no portion of the upper chip interferes with a vertical line of sight of each bond pad of the lower chip to permit wire bonding thereof. Therefore, all semiconductor chips can be wire bonded simultaneously after stacking the chips on the substrate. This allows wire bonding of all chips to be completed in a single step so as to increase UPH (unit per hour), thereby reducing cost for manufacturing the MCM.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: June 26, 2001
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chun Hung Lin, Kuang-Hui Chen, Shyh-Wei Wang, Su Tao
  • Patent number: 6221697
    Abstract: A chip scale package mainly comprises two elastomer pads respectively interposed between a substrate and a semiconductor chip. Each of the elastomer pads is respectively situated on the flank of a slot centrally defined in the substrate, and keeps a predetermined distance from the slot. The semiconductor chip is attached onto the upper surface of the substrate through the two elastomer pads wherein bonding pads formed on the semiconductor chip are exposed from the slot of the substrate. The upper surface of the substrate is provided with a plurality of solder pads and leads. Each of the leads has one end electrically connected to a corresponding solder pad, and the other end electrically connected to a corresponding bonding pad of the semiconductor chip. The substrate has a plurality of through-holes formed corresponding to the solder pads such that each solder pad has a portion exposed within the through-hole for mounting a solder ball.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: April 24, 2001
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ching-Huei Su, Chih-Chang Yang, Shyh-Wei Wang, Chih-Sien Yeh