Patents by Inventor Shyue Fong Quek

Shyue Fong Quek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9064084
    Abstract: Enhancements in lithography for forming an integrated circuit are disclosed. The enhancements include a topography analysis of a design data file to obtain accumulative topography information for different mask levels. The topography information facilitates topography driven optical proximity correction and topography driven lithography.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: June 23, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Ushasree Katakamsetty, Yang Qing, Wee Kwong Yeo, Chiu Wing Hui, Shyue Fong Quek, Valerio Perez
  • Patent number: 8898597
    Abstract: An approach for methodology, and an associated apparatus, enabling a simulation process to check integrity of the design and predict a manufacturability of a resulting circuit that accounts for process latitude without a long turnaround time and/or a highly skilled engineer is disclosed. Embodiments include: determining first and second features of an IC design; determining a thickness of a resist layer of the IC design based on an aerial image of the IC design; determining a threshold value according to the thickness; and comparing the threshold value to a separation distance between the first and second features.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 25, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Qing Yang, Shyue Fong Quek, Gek Soon Chua, Yee Mei Foong, Dong Qing Zhang, Yun Tang
  • Publication number: 20140282286
    Abstract: An approach for methodology, and an associated apparatus, enabling a simulation process to check integrity of the design and predict a manufacturability of a resulting circuit that accounts for process latitude without a long turnaround time and/or a highly skilled engineer is disclosed. Embodiments include: determining first and second features of an IC design; determining a thickness of a resist layer of the IC design based on an aerial image of the IC design; determining a threshold value according to the thickness; and comparing the threshold value to a separation distance between the first and second features.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Qing YANG, Shyue Fong Quek, Gek Soon Chua, Yee Mei Foong, Dong Qing Zhang, Yun Tang
  • Publication number: 20140282300
    Abstract: Enhancements in lithography for forming an integrated circuit are disclosed. The enhancements include a topography analysis of a design data file to obtain accumulative topography information for different mask levels. The topography information facilitates topography driven optical proximity correction and topography driven lithography.
    Type: Application
    Filed: April 24, 2014
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Ushasree KATAKAMSETTY, Yang QING, Wee Kwong YEO, Chiu Wing HUI, Shyue Fong QUEK, Valerio PEREZ
  • Publication number: 20130252350
    Abstract: A method of generating care areas is disclosed. An artwork file of a layout of a product is provided and a cell tree of the layout is formed. The cell tree includes a plurality of cells of the layout arranged in a hierarchical order. The method also includes defining care areas in the artwork file of the layout.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Hun Chow LEE, Shyue Fong QUEK, Seng-Keong Victor LIM, Fang Hong GN
  • Patent number: 6963113
    Abstract: A new method for forming a silicon-on-insulator MOSFET while eliminating floating body effects is described. A silicon-on-insulator substrate is provided comprising a silicon semiconductor substrate underlying an oxide layer underlying a silicon layer. A first trench is etched partially through the silicon layer and not to the underlying oxide layer. Second trenches are etched fully through the silicon layer to the underlying oxide layer wherein the second trenches separate active areas of the semiconductor substrate and wherein one of the first trenches lies within each of the active areas. The first and second trenches are filled with an insulating layer. Gate electrodes and associated source and drain regions are formed in and on the silicon layer in each active area. An interlevel dielectric layer is deposited overlying the gate electrodes. First contacts are opened through the interlevel dielectric layer to the underlying source and drain regions.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: November 8, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ting Cheong Ang, Sang Yee Loong, Shyue Fong Quek, Jun Song
  • Patent number: 6803314
    Abstract: A double layered low dielectric constant material dual damascene metallization process is described. Metal lines are provided covered by an insulating layer overlying a semiconductor substrate. A first organic dielectric layer is deposited overlying the insulating layer. A second inorganic dielectric layer is deposited overlying the first dielectric layer. In a first method, a via pattern is etched into the second dielectric layer. The via pattern is etched into the first dielectric layer using the patterned second dielectric layer as a mask. Thereafter, a trench pattern is etched into the second inorganic dielectric layer to complete dual damascene openings. In a second method, a trench pattern is etched into the second dielectric layer. Thereafter, a via pattern is etched through the second inorganic dielectric layer and the first organic dielectric layer to complete dual damascene openings. In a third method, a via pattern is etched into the second dielectric layer.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 12, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shyue Fong Quek, Ting Cheong Ang, Yee Chong Wong, Sang Yee Long
  • Patent number: 6787422
    Abstract: A new method for forming a silicon-on-insulator MOSFET while eliminating floating body effects is described. A silicon-on-insulator substrate is provided comprising a silicon semiconductor substrate underlying an oxide layer underlying a silicon layer. A first trench is etched partially through the silicon layer and not to the underlying oxide layer. Second trenches are etched fully through the silicon layer to the underlying oxide layer wherein the second trenches separate active areas of the semiconductor substrate and wherein one of the first trenches lies within each of the active areas. The first and second trenches are filled with an insulating layer. Gate electrodes and associated source and drain regions are formed in and on the silicon layer in each active area. An interlevel dielectric layer is deposited overlying the gate electrodes. First contacts are opened through the interlevel dielectric layer to the underlying source and drain regions.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: September 7, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ting Cheong Ang, Sang Yee Loong, Shyue Fong Quek, Jun Song
  • Patent number: 6764914
    Abstract: A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: July 20, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Alex See, Cher Liang Randall Cha, Shyue Fong Quek, Ting Cheong Ang, Wye Boon Loh, Sang Yee Loong, Jun Song, Chua Chee Tee
  • Patent number: 6737739
    Abstract: A semiconductor chip device package comprised of a semiconductor substrate having semiconductor devices formed on the semiconductor substrate. At least one dielectric layer is over the semiconductor substrate. At least one layer of interconnects is over the semiconductor devices and within the at least one respective dielectric layer with at least a portion of the interconnects being separated by voids having a vacuum or air therein. A passivation layer is over the uppermost of the at least one layer of interconnects. Wherein the semiconductor chip device is vacuum sealed within a semiconductor chip device package.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: May 18, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shyue-Fong Quek, Ting Cheong Ang, Duay Ing Ong, Sang Yee Loong
  • Patent number: 6653674
    Abstract: A semiconductor device is provided having angled dopant implantation and vertical trenches in the silicon on insulator substrate adjacent to the sides of a semiconductor gate. A second dopant implantation is in the exposed the source/drain junctions. Contacts having inwardly curved cross-sectional widths in the semiconductor substrate connect vertically to the exposed source/drain junctions either directly or through salicided contact areas.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: November 25, 2003
    Assignee: Chartered Semiconductor Manufacturing LTD
    Inventors: Shyue Fong Quek, Ting Cheong Ang, Sang Yee Loong, Puay Ing Ong
  • Patent number: 6611024
    Abstract: An integrated microelectronics semiconductor circuit fabricated on a silicon-on-insulator (SOI) type substrate can be protected from unwanted current surges and excessive heat buildup during fabrication by means of a heat-dissipating, protective plasma-induced-damage (PID) diode. The present invention fabricates such a protective diode as a part of the overall scheme in which the transistor devices are formed.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: August 26, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ting Cheong Ang, Shyue Fong Quek, Sang Yee Loong, Jun Song
  • Patent number: 6582856
    Abstract: A new method of fabricating a rim phase shifting mask is achieved. An opaque layer is provided overlying a transparent substrate. A resist layer is deposited overlying the opaque layer. The resist layer is patterned. The opaque layer and the transparent substrate are etched. The resist layer masks this etching. The opaque layer is etched through during this etching. Notches are thereby etched into the transparent substrate at the edges of the opaque layer. These notches will cause a phase shift in incident light relative to incident light passing through regions in the transparent substrate adjacent to the notches. During this etching, an overetch is performed to remove any mask defects in the transparent substrate. Optionally, the notches may be etched into a phase shifting layer overlying the transparent substrate. An etch stopping layer may also be used in the phase shifting layer embodiment.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: June 24, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shyue Fong Quek, Ting Cheong Ang, Jun Song, Sang Yee Loong
  • Publication number: 20030104673
    Abstract: A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures.
    Type: Application
    Filed: November 7, 2002
    Publication date: June 5, 2003
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Alex See, Cher Liang Randall Cha, Shyue Fong Quek, Ting Cheong Ang, Wye Boon Loh, Sang Yee Loong, Jun Song, Chua Chee Tee
  • Publication number: 20030052403
    Abstract: A semiconductor chip device package comprised of a semiconductor substrate having semiconductor devices formed on the semiconductor substrate. At least one dielectric layer is over the semiconductor substrate. At least one layer of interconnects is over the semiconductor devices and within the at least one respective dielectric layer with at least a portion of the interconnects being separated by voids having a vacuum or air therein. A passivation layer is over the uppermost of the at least one layer of interconnects. Wherein the semiconductor chip device is vacuum sealed within a semiconductor chip device package.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 20, 2003
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Shyue-Fong Quek, Ting Cheong Ang, Duay Ing Ong, Sang Yee Loong
  • Publication number: 20030006462
    Abstract: A semiconductor device is provided having angled dopant implantation and vertical trenches in the silicon on insulator substrate adjacent to the sides of a semiconductor gate. A second dopant implantation is in the exposed the source/drain junctions. Contacts having inwardly curved cross-sectional widths in the semiconductor substrate connect vertically to the exposed source/drain junctions either directly or through salicided contact areas.
    Type: Application
    Filed: August 23, 2002
    Publication date: January 9, 2003
    Inventors: Shyue Fong Quek, Ting Cheong Ang, Sang Yee Loong, Puay Ing Ong
  • Patent number: 6495399
    Abstract: A semiconductor chip device package comprised of a semiconductor substrate having semiconductor devices formed on the semiconductor substrate. At least one dielectric layer is over the semiconductor substrate. At least one layer of interconnects is over the semiconductor devices and within the at least one respective dielectric layer with at least a portion of the interconnects being separated by voids having a vacuum or air therein. A passivation layer is over the uppermost of the at least one layer of interconnects. Wherein the semiconductor chip device is vacuum sealed within a semiconductor chip device package.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: December 17, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shyue-Fong Quek, Ting Cheong Ang, Duay Ing Ong, Sang Yee Loong
  • Patent number: 6492726
    Abstract: In accordance with the objectives of the invention a new package is provided that is provided with a cavity that is shaped such that more than one semiconductor device can in a vertical direction be mounted in the cavity of the package. The devices that are mounted inside the cavity of the package are separated by separate components of insulation, the overlying devices are electrically interconnected by horizontally positioned solder bumps and vertical interconnect plugs.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: December 10, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shyue Fong Quek, Ying Keung Leung, Sang Yee Loong, Ting Cheong Ang
  • Patent number: 6486515
    Abstract: A method for forming an electrostatic discharge device using silicon-on-insulator technology is described. An N-well is formed within a silicon semiconductor substrate. A P+ region is implanted within a portion of the N-well and an N+ region is implanted within a portion of the semiconductor substrate not occupied by the N-well. An oxide layer is formed overlying the semiconductor substrate and patterned to form openings to the semiconductor substrate. An epitaxial silicon layer is grown within the openings and overlying the oxide layer. Shallow trench isolation regions are formed within the epitaxial silicon layer extending to the underlying oxide layer. Gate electrodes and associated source and drain regions are formed in and on the epitaxial silicon layer between the shallow trench isolation regions. An interlevel dielectric layer is deposited overlying the gate electrodes. First contacts are opened through the interlevel dielectric layer to the underlying source and drain regions.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: November 26, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd
    Inventors: Song Jun, Ting Cheong Ang, Sang Yee Loong, Shyue Fong Quek
  • Publication number: 20020160604
    Abstract: A double layered low dielectric constant material dual damascene metallization process is described. Metal lines are provided covered by an insulating layer overlying a semiconductor substrate. A first organic dielectric layer is deposited overlying the insulating layer. A second inorganic dielectric layer is deposited overlying the first dielectric layer. In a first method, a via pattern is etched into the second dielectric layer. The via pattern is etched into the first dielectric layer using the patterned second dielectric layer as a mask. Thereafter, a trench pattern is etched into the second inorganic dielectric layer to complete dual damascene openings. In a second method, a trench pattern is etched into the second dielectric layer. Thereafter, a via pattern is etched through the second inorganic dielectric layer and the first organic dielectric layer to complete dual damascene openings. In a third method, a via pattern is etched into the second dielectric layer.
    Type: Application
    Filed: April 30, 2001
    Publication date: October 31, 2002
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shyue Fong Quek, Ting Cheong Ang, Yee Chong Wong, Sang Yee Leong