Patents by Inventor Shyuji Tobashi

Shyuji Tobashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030045128
    Abstract: A wafer transfer method, by which, when a wafer is loaded into a system, heat shock applied to the wafer can be relieved, the frequency of occurrence of crystal dislocation such as slip can be decreased, and productivity can be improved due to saving of energy and time required for heating and cooling of the system, and there is also provided a wafer support member used for this method. In this method, a step for transferring wafers so as to replace a wafer, which finishes its thin film growth process, with a following wafer, which is to be subjected to its thin film growth process, is carried out under the temperature being higher than the room temperature, while the wafer 1 is transferred integrally with a wafer support member 2 used for the thin film growth process.
    Type: Application
    Filed: April 19, 2002
    Publication date: March 6, 2003
    Applicant: TOSHIBA KIKAI KABUSHIKI KAISHA
    Inventors: Shyuji Tobashi, Tadashi Ohashi, Katsuyuki Iwata, Shinichi Mitani, Hideki Arai, Hideki Ito
  • Publication number: 20020182892
    Abstract: There is provided a wafer transfer method, by which, when a wafer is loaded into a system, heat shock applied to the wafer can be relieved, the frequency of occurrence of crystal dislocation such as slip can be decreased, and productivity can be improved due to saving of energy and time required for heating and cooling of the system, and there is also provided a wafer support member used for this method. In this method, a step for transferring wafers so as to replace a wafer, which finishes its thin film growth process, with a following wafer, which is to be subjected to its thin film growth process, is carried out under the temperature being higher than the room temperature, while the wafer 1 is transferred integrally with a wafer support member 2 used for the thin film growth process.
    Type: Application
    Filed: December 15, 2000
    Publication date: December 5, 2002
    Inventors: Hideki Arai, Shinichi Mitani, Hideki Ito, Katsuyuki Iwata, Tadashi Ohashi, Shyuji Tobashi
  • Patent number: 6485573
    Abstract: An apparatus for reduced-pressure gaseous phase epitaxial growth by suppressing contamination upon the machine parts constituting the rotary mechanical portion and suppressing contamination upon the semiconductor wafer by maintaining the pressure in the rotary mechanical portion to lie within a particular range, and a method of controlling the above apparatus.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: November 26, 2002
    Assignees: Toshiba Ceramics Co., Ltd., Toshiba Kikai Kabushikikaisha
    Inventors: Katsuyuki Iwata, Tadashi Ohashi, Shyuji Tobashi, Shinichi Mitani, Hideki Arai, Hideki Ito
  • Patent number: 6461428
    Abstract: A method of controlling the temperature of a semiconductor substrate for prevention of any cracks from being formed in the semiconductor substrate event though semiconductors having different temperature rise/fall characteristics are fed into a reactor in which each semiconductor substrates is subjected to an oxidation, diffusion, or a chemical vapor deposition process. The temperatures are measured at various points in the semiconductor substrates in the heated reactor; the temperature rise/fall characteristic thereof is determined by computing the rate of temperature rise and the in-plane temperature distribution out of the measured values; a temperature control program adaptable for said temperature rise/fall characteristic is automatically selected out of a plurality of temperature control programs written in advance; the semiconductor substrate is controlled on the basis of the selected temperature control program.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: October 8, 2002
    Assignees: Toshiba Ceramics Co., Ltd., Toshiba Kikai Kabushiki Kaisha
    Inventors: Shyuji Tobashi, Tadashi Ohashi, Katsuyuki Iwata, Hiroyuki Saito, Shinichi Mitani, Takaaki Honda, Hideki Arai, Yoshitaka Murofushi, Kunihiko Suzuki, Hidenori Takahashi, Hideki Ito, Hirofumi Katsumata
  • Publication number: 20020009868
    Abstract: An improved method of growing a thin film in gaseous phase maintaining a uniform thickness and uniform electric properties such as resistivity, etc. over the whole surface of the film, and an apparatus for growing a thin film in gaseous phase adapted to conducting the above method.
    Type: Application
    Filed: May 15, 2001
    Publication date: January 24, 2002
    Applicant: TOSHIBA CERAMICS CO., LTD.
    Inventors: Shyuji Tobashi, Tadashi Ohashi, Katsuyuki Iwata, Takaaki Honda, Hideki Arai, Kunihiko Suzuki
  • Publication number: 20010020439
    Abstract: A method of controlling the temperature of a semiconductor substrate for prevention of any cracks from being formed in the semiconductor substrate event though semiconductors having different temperature rise/fall characteristics are fed into a reactor in which each semiconductor substrates is subjected to an oxidation, diffusion, or a chemical vapor deposition process. The temperatures are measured at various points in the semiconductor substrates in the heated reactor; the temperature rise/fall characteristic thereof is determined by computing the rate of temperature rise and the in-plane temperature distribution out of the measured values; a temperature control program adaptable for said temperature rise/fall characteristic is automatically selected out of a plurality of temperature control programs written in advance; the semiconductor substrate is controlled on the basis of the selected temperature control program.
    Type: Application
    Filed: December 5, 2000
    Publication date: September 13, 2001
    Inventors: Shyuji Tobashi, Tadashi Ohashi, Katsuyuki Iwata, Hiroyuki Saito, Shinichi Mitani, Takaaki Honda, Hideki Arai, Yoshitaka Murofushi, Kunihiko Suzuki, Hidenori Takahashi, Hideki Ito, Hirofumi Katsumata