Patents by Inventor Si Yi Li

Si Yi Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7311852
    Abstract: A semiconductor manufacturing process wherein a low-k dielectric layer is plasma etched with selectivity to an overlying mask layer. The etchant gas can be oxygen-free and include a fluorocarbon reactant, a nitrogen reactant and an optional carrier gas, the fluorocarbon reactant and nitrogen reactant being supplied to a chamber of a plasma etch reactor at flow rates such that the fluorocarbon reactant flow rate is less than the nitrogen reactant flow rate. The etch rate of the low-k dielectric layer can be at least 5 times higher than that of a silicon dioxide, silicon nitride, silicon oxynitride or silicon carbide mask layer. The process is useful for etching 0.25 micron and smaller contact or via openings in forming structures such as damascene structures.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: December 25, 2007
    Assignee: Lam Research Corporation
    Inventors: Si Yi Li, Helen H. Zhu, S. M. Reza Sadjadi, James V. Tietz, Bryan A. Helmer
  • Patent number: 7166535
    Abstract: A process for plasma etching silicon carbide with selectivity to an overlying and/or underlying dielectric layer of material. The dielectric material can comprise silicon dioxide, silicon oxynitride, silicon nitride or various low-k dielectric materials including organic low-k materials. The etching gas includes a chlorine containing gas such as Cl2, an oxygen containing gas such as O2, and a carrier gas such as Ar. In order to achieve a desired selectivity to such dielectric materials, the plasma etch gas chemistry is selected to achieve a desired etch rate of the silicon carbide while etching the dielectric material at a slower rate. The process can be used to selectively etch a hydrogenated silicon carbide etch stop layer or silicon carbide substrate.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: January 23, 2007
    Assignee: Lam Research Corporation
    Inventors: Si Yi Li, S. M. Reza Sadjadi, James V. Tietz
  • Patent number: 6919278
    Abstract: A system and method for achieving a silicon carbide to low-k dielectric etch selectivity ratio of greater than 1:1 using a chlorine containing gas and either hydrogen (H2) gas or nitrogen (N2) gas is described. The method is applied to a semiconductor substrate having a low-k dielectric layer and a silicon carbide layer. The chlorine containing gas is a gas mixture that includes either HCl, BCl3, Cl2, or any combination thereof. In one embodiment, the method provides for supplying an etchant gas comprising a chlorine containing gas and a hydrogen (H2) gas. The etchant gas is then energized to generate a plasma which then etches openings in the silicon carbide at a faster etch rate than the low-k dielectric etch rate. In an alternative embodiment, the etchant gas mixture comprises a chlorine containing gas and a nitrogen (N2) gas.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: July 19, 2005
    Assignee: Lam Research Corporation
    Inventors: Sean S. Kang, Si Yi Li, S. M. Reza Sadjadi
  • Patent number: 6875699
    Abstract: A method of forming a damascene structure above a substrate is provided. A low-k dielectric layer is formed over the substrate, wherein the low-k dielectric layer does not have a trench stop layer. A plurality of vias are etched through the low-k dielectric layer. Via plugs are formed in the plurality of vias. A plurality of trenches are etched into the low-k dielectric layer, wherein the etching with sufficiently high via plugs minimizes facet formation at the tops of vias exposed to the etch and wherein the trench etch process removes fences caused by the via plugs. The via plugs are stripped.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: April 5, 2005
    Assignees: Lam Research Corporation, Novellus Sytems, Inc.
    Inventors: Stephan Lassig, S. M. Reza Sadjadi, Vinay Pohray, Si Yi Li, Thomas W. Mountsier, Chiu Chi
  • Patent number: 6670278
    Abstract: The invention provides a process for plasma etching silicon carbide with selectivity to an overlapping and/or underlying dielectric layer of material. The etching gas includes a hydrogen-containing fluorocarbon gas such as CH3F, an oxygen-containing gas such as O2 and an optional carrier gas such as Ar. The dielectric material can comprise silicon dioxide, silicon nitride, silicon oxynitride or various low-k dielectric materials including organic low-k materials. In order to achieve a desired selectivity to such dielectric materials, the plasma etch gas chemistry is selected to achieve a desired etch rate of the silicon carbide while etching the dielectric material at a slower rate. The process can be used to selectively etch a hydrogenated silicon carbide etch stop layer or silicon carbide substrates.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: December 30, 2003
    Assignee: Lam Research Corporation
    Inventors: Si Yi Li, Helen H. Zhu, S. M. Reza Sadjadi, David R. Pirkle, James Bowers, Michael Goss
  • Publication number: 20030199170
    Abstract: A process for plasma etching silicon carbide with selectivity to an overlying and/or underlying dielectric layer of material. The dielectric material can comprise silicon dioxide, silicon oxynitride, silicon nitride or various low-k dielectric materials including organic low-k materials. The etching gas includes a chlorine containing gas such as Cl2, an oxygen containing gas such as O2, and a carrier gas such as Ar. In order to achieve a desired selectivity to such dielectric materials, the plasma etch gas chemistry is selected to achieve a desired etch rate of the silicon carbide while etching the dielectric material at a slower rate. The process can be used to selectively etch a hydrogenated silicon carbide etch stop layer or silicon carbide substrate.
    Type: Application
    Filed: May 6, 2003
    Publication date: October 23, 2003
    Inventor: Si Yi Li
  • Publication number: 20030087531
    Abstract: A system and method for achieving a silicon carbide to low-k dielectric etch selectivity ratio of greater than 1:1 using a chlorine containing gas and either hydrogen (H2) gas or nitrogen (N2) gas is described. The method is applied to a semiconductor substrate having a low-k dielectric layer and a silicon carbide layer. The chlorine containing gas is a gas mixture that includes either HCl, BCl3, Cl2, or any combination thereof. In one embodiment, the method provides for supplying an etchant gas comprising a chlorine containing gas and a hydrogen (H2) gas. The etchant gas is then energized to generate a plasma which then etches openings in the silicon carbide at a faster etch rate than the low-k dielectric etch rate. In an alternative embodiment, the etchant gas mixture comprises a chlorine containing gas and a nitrogen (N2) gas.
    Type: Application
    Filed: July 19, 2002
    Publication date: May 8, 2003
    Applicant: Lam Research Corporation
    Inventors: Sean S. Kang, Si Yi Li, S.M. Reza Sadjadi
  • Publication number: 20030024902
    Abstract: A semiconductor manufacturing process wherein a low-k dielectric layer is plasma etched with selectivity to an overlying mask layer. The etchant gas can be oxygen-free and include a fluorocarbon reactant, a nitrogen reactant and an optional carrier gas, the fluorocarbon reactant and nitrogen reactant being supplied to a chamber of a plasma etch reactor at flow rates such that the fluorocarbon reactant flow rate is less than the nitrogen reactant flow rate. The etch rate of the low-k dielectric layer can be at least 5 times higher than that of a silicon dioxide, silicon nitride, silicon oxynitride or silicon carbide mask layer. The process is useful for etching 0.25 micron and smaller contact or via openings in forming structures such as damascene structures.
    Type: Application
    Filed: March 30, 2001
    Publication date: February 6, 2003
    Inventors: Si Yi Li, Helen H. Zhu, S. M. Reza Sadjadi, James V. Tietz, Bryan A. Helmer
  • Publication number: 20020177321
    Abstract: A process for plasma etching silicon carbide with selectivity to an overlying and/or underlying dielectric layer of material. The dielectric material can comprise silicon dioxide, silicon oxynitride, silicon nitride or various low-k dielectric materials including organic low-k materials. The etching gas includes a chlorine containing gas such as Cl2, an oxygen containing gas such as O2, and a carrier gas such as Ar. In order to achieve a desired selectivity to such dielectric materials, the plasma etch gas chemistry is selected to achieve a desired etch rate of the silicon carbide while etching the dielectric material at a slower rate. The process can be used to selectively etch a hydrogenated silicon carbide etch stop layer or silicon carbide substrate.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 28, 2002
    Inventor: Si Yi Li
  • Publication number: 20020177322
    Abstract: The invention provides a process for plasma etching silicon carbide with selectivity to an overlapping and/or underlying dielectric layer of material. The etching gas includes a hydrogen-containing fluorocarbon gas such as CH3F, an oxygen-containing gas such as O2 and an optional carrier gas such as Ar. The dielectric material can comprise silicon dioxide, silicon nitride, silicon oxynitride or various low-k dielectric materials including organic low-k materials. In order to achieve a desired selectivity to such dielectric materials, the plasma etch gas chemistry is selected to achieve a desired etch rate of the silicon carbide while etching the dielectric material at a slower rate. The process can be used to selectively etch a hydrogenated silicon carbide etch stop layer or silicon carbide substrates.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 28, 2002
    Inventors: Si Yi Li, Helen H. Zhu, S.M. Reza Sadjadi, David R. Pirkle, James Bowers, Michael Goss