Patents by Inventor Si-Young Choi

Si-Young Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7098123
    Abstract: Methods of forming a semiconductor device having a metal gate electrode include sequentially forming a gate insulator, a gate polysilicon layer and a metal-gate layer on a semiconductor substrate. The metal-gate layer and the gate polysilicon layer are sequentially patterned to form a gate pattern comprising a stacked gate polysilicon pattern and a metal-gate pattern. An oxidation barrier layer is formed to cover at least a portion of a sidewall of the metal-gate pattern.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: August 29, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Jun Heo, Sun-Pil Youn, Sung-Man Kim, Si-Young Choi, Gil-Heyun Choi, Ja-Hum Ku, Chang-Won Lee, Jong-Myeong Lee, Kwon-Sun Ryu
  • Publication number: 20060163677
    Abstract: Methods of forming a semiconductor device having a metal gate electrode include sequentially forming a gate insulator, a gate polysilicon layer and a metal-gate layer on a semiconductor substrate. The metal-gate layer and the gate polysilicon layer are sequentially patterned to form a gate pattern comprising a stacked gate polysilicon pattern and a metal-gate pattern. An oxidation barrier layer is formed to cover at least a portion of a sidewall of the metal-gate pattern.
    Type: Application
    Filed: March 22, 2006
    Publication date: July 27, 2006
    Inventors: Seong-Jun Heo, Sun-Pil Youn, Sung-Man Kim, Si-Young Choi, Gil-Heyun Choi, Ja-Hum Ku, Chang-Won Lee, Jong-Myeong Lee, Kwon-Sun Ryu
  • Patent number: 7081391
    Abstract: An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: July 25, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-chan Lee, Si-young Choi, Jong-ryeol Yoo, Yong-hoon Son, In-soo Jung, Deok-hyung Lee
  • Patent number: 7074662
    Abstract: A method of forming a fin field effect transistor on a semiconductor substrate includes forming a vertical fin protruding from the substrate. A buffer oxide liner is formed on a top surface and on sidewalls of the fin. A trench is then formed on the substrate, where at least a portion of the fin protrudes from a bottom surface of the trench. The trench may be formed by forming a dummy gate on at least a portion of the fin, forming an insulation layer on the fin surrounding the dummy gate, and then removing the dummy gate to expose the at least a portion of the fin, such that the trench is surrounded by the insulation layer. The buffer oxide liner is then removed from the protruding portion of the fin, and a gate is formed in the trench on the protruding portion of the fin.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: July 11, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Yong-Hoon Son, In-Soo Jung
  • Patent number: 7071048
    Abstract: A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: July 4, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, Deok-Hyung Lee, In-Soo Jung
  • Publication number: 20050250279
    Abstract: Methods for forming semiconductor devices are provided. A semiconductor substrate is etched such that the semiconductor substrate defines a trench and a preliminary active pattern. The trench has a floor and a sidewall. An insulating layer is provided on the floor and the sidewall of the trench and a spacer is formed on the insulating layer such that the spacer is on the sidewall of the trench and on a portion of the floor of the trench. The insulating layer is removed on the floor of the trench and beneath the spacer such that a portion of the floor of the trench is at least partially exposed, the spacer is spaced apart from the floor of the trench and a portion of the preliminary active pattern is partially exposed. A portion of the exposed portion of the preliminary active pattern is partially removed to provide an active pattern that defines a recessed portion beneath the spacer. A buried insulating layer is formed in the recessed portion of the active pattern. Related devices are also provided.
    Type: Application
    Filed: March 4, 2005
    Publication date: November 10, 2005
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, In-Soo Jung, Deok-Hyung Lee
  • Patent number: 6963094
    Abstract: Metal oxide semiconductor transistors and devices with such transistors and methods of fabricating such transistors and devices are provided. Such transistors may have a silicon well region having a first surface and having spaced apart source and drain regions therein. A gate insulator is provided on the first surface of the silicon well region and disposed between the source and drain regions and a gate electrode is provided on the gate insulator. A region of insulating material is disposed between a first surface of the drain region and the silicon well region. The region of insulating material extends toward but not to the source region. A source electrode is provided that contacts the source region. A drain electrode contacts the drain region and the region of insulating material.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: November 8, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-Chan Lee, Si-Young Choi, Chul-Sung Kim, Jong-Ryeol Yoo, Deok-Hyung Lee
  • Publication number: 20050235189
    Abstract: Provided are a measurement circuit and method for serially merging single-ended signals to analyze them. To analyze two differential signals probed from a DUT, that is, DP and DM signals, the measurement circuit detects DP data from which its DC portion has been removed and DM data from which its DC portion has been removed, stores the two data signals in a memory, and then serially merges the two data signals stored in the memory without distorting them. The measurement circuit divides the serially merged signal at a predetermined period and overlaps the divided signals to generate eye diagram data and analysis data including crossover voltages, rising time, falling time and so on.
    Type: Application
    Filed: March 8, 2005
    Publication date: October 20, 2005
    Inventor: Si-young Choi
  • Publication number: 20050218395
    Abstract: Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates, and methods of forming such substrates and integrated circuits. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
    Type: Application
    Filed: March 15, 2005
    Publication date: October 6, 2005
    Inventors: Sung-Min Kim, Kyoung-Hwan Yeo, In-Soo Jung, Si-Young Choi, Dong-Won Kim, Yong-Hoon Son, Young-Eun Lee, Byeong-Chan Lee, Jong-Wook Lee
  • Publication number: 20050184316
    Abstract: A fin field effect transistor has a fin pattern protruding from a semiconductor substrate. The fin pattern includes first semiconductor patterns and second semiconductor patterns which are stacked. The first and second semiconductor patterns have lattice widths that are greater than a lattice width of the substrate in at least one direction. In addition, the first and second semiconductor patterns may be alternately stacked to increase the height of the fin pattern, such that one of the first and second patterns can reduce stress from the other of the first and second patterns. The first and second semiconductor patterns may be formed of strained silicon and silicon-germanium, where the silicon-germanium patterns can reduce stress from the strained silicon patterns. Therefore, both the number of carriers and the mobility of carriers in the transistor channel may be increased, improving performance of the fin field effect transistor. Related methods are also discussed.
    Type: Application
    Filed: June 17, 2004
    Publication date: August 25, 2005
    Inventors: Young-Pil Kim, Sun-Ghil Lee, Si-Young Choi
  • Publication number: 20050179073
    Abstract: An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
    Type: Application
    Filed: November 26, 2003
    Publication date: August 18, 2005
    Inventors: Byeong-chan Lee, Si-young Choi, Jong-ryeol Yoo, Yong-hoon Son, In-soo Jung, Deok-hyung Lee
  • Publication number: 20050145932
    Abstract: A field effect transistor can include a vertical channel protruding from a substrate including a source/drain region junction between the vertical channel and the substrate, and an insulating layer extending on a side wall of the vertical channel toward the substrate to beyond the source/drain region junction. The transistor can also include a nitride layer extending on the side wall away from the substrate to beyond the insulating layer, a second insulating layer extending on the side wall that is separated from the channel by the nitride layer, and a gate electrode extending on the side wall toward the substrate to beyond the source/drain region junction. Related methods are also disclosed.
    Type: Application
    Filed: February 17, 2004
    Publication date: July 7, 2005
    Inventors: Tai-su Park, Eui-Joon Yoon, U-In Chung, Si-Young Choi, Jong-Ho Lee
  • Patent number: 6900102
    Abstract: A double gate electrode for a field effect transistor is fabricated by forming in a substrate, a trench and a tunnel that extends from a sidewall of the trench parallel to the substrate. An insulating coating is formed inside the tunnel. A bottom gate electrode is formed within the insulating coating inside the tunnel. An insulating layer is formed on the substrate and a top gate electrode is formed on the insulating layer opposite the bottom gate electrode.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: May 31, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-Chan Lee, Si-Young Choi, Jong-Ryeol Yoo, Deok-Hyung Lee, In-Soo Jung
  • Publication number: 20050104096
    Abstract: A fin field effect transistor (FinFET) includes a first gate and a second gate. The first gate has a vertical part that is defined by sidewalls of a silicon fin and sidewalls of a capping pattern disposed on the silicon fin and a horizontal part horizontally extends from the vertical part. The second gate is made of a low-resistivity material and is in direct contact with the horizontal part of the first gate. A channel may be controlled due to the first gate, and a device operating speed may be enhanced due to the second gate. Related fabrication methods also are described.
    Type: Application
    Filed: September 9, 2004
    Publication date: May 19, 2005
    Inventors: Deok-Hyung Lee, Byeong-Chan Lee, Si-Young Choi, In-Soo Jung
  • Patent number: 6890823
    Abstract: Methods of forming thermal oxide layers on a side wall of gate electrodes are disclosed. In particular, thermal oxide layers can be formed on a side wall of a gate electrode by forming a gate electrode on an integrated circuit substrate and forming a thermal oxide layer on a side wall of the gate electrode using a thermal oxidation process. A silicide layer can be formed on the gate electrode after the formation of the thermal oxide layer.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: May 10, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-chan Lee, Si-young Choi, Chul-sung Kim, Jong-ryeol Yoo, Deok-hyung Lee
  • Publication number: 20050095795
    Abstract: Metal-oxide-semiconductor (MOS) transistors having elevated source/drain regions and methods of fabricating the same are provided. The MOS transistors may include a gate pattern formed to cross over a predetermined region of a substrate. Recessed regions are provided in the substrate adjacent to the gate pattern. Epitaxial layers are provided on bottom surfaces of the recessed regions. High concentration impurity regions are provided in the epitaxial layers. The recessed regions may be formed using a chemical dry etching techniques.
    Type: Application
    Filed: July 7, 2004
    Publication date: May 5, 2005
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, Deok-Hyung Lee, In-Soo Jung
  • Publication number: 20050093082
    Abstract: A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
    Type: Application
    Filed: September 8, 2004
    Publication date: May 5, 2005
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, Deok-Hyung Lee, In-Soo Jung
  • Publication number: 20050072992
    Abstract: A method of forming a semiconductor device may include forming a fin structure extending from a substrate. The fin structure may include first and second source/drain regions and a channel region therebetween, and the first and second source/drain regions may extend a greater distance from the substrate than the channel region. A gate insulating layer may be formed on the channel region, and a gate electrode may be formed on the gate insulating layer so that the gate insulating layer is between the gate electrode and the channel region. Related devices are also discussed.
    Type: Application
    Filed: May 25, 2004
    Publication date: April 7, 2005
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Yong-Hoon Son, In-Soo Jung
  • Patent number: 6864132
    Abstract: Integrated circuit gates are fabricated by forming an insulated gate on an integrated circuit substrate, wherein the insulated gate includes a gate oxide on the integrated circuit substrate, a polysilicon pattern including polysilicon sidewalls, on the gate oxide, and a metal pattern on the polysilicon pattern. The insulated gate is pretreated with hydrogen and nitrogen gasses. The polysilicon sidewalls are then oxidized. The pretreating in hydrogen and nitrogen gasses prior to oxidizing can reduce growth in thickness of the gate oxide during the oxidizing and/or can reduce formation of whiskers on the metal pattern, compared to absence of the pretreatment.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 8, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Kyu Cho, Si-Young Choi, Sun-Pil Youn, Sung-Man Kim, Ja-Hum Ku
  • Patent number: 6849520
    Abstract: A trench isolation in a semiconductor device, and a method for fabricating the same, includes: forming a trench having inner sidewalls for device isolation in a silicon substrate; forming an oxide layer on a surface of the silicon substrate that forms the inner sidewalls of the trench; supplying healing elements to the silicon substrate to remove dangling bonds; and filling the trench with a device isolation layer, thereby forming the trench isolation without dangling bonds causing electrical charge traps.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: February 1, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-Sung Kim, Si-Young Choi, Jung-Woo Park, Jong-Ryol Ryu, Byeong-Chan Lee