Patents by Inventor Siddarth Jain

Siddarth Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975451
    Abstract: A system for parameter tuning for robotic manipulators is provided. The system includes an interface configured to receive a task specification, a plurality of physical parameters, and a plurality of control parameters, wherein the interface is configured to communicate with a real-world robot via a robot controller. The system further includes a memory to store computer-executable programs including a robot simulation module, a robot controller, and an auto-tuning module a processor, in connection with the memory. In this case, the processor is configured to acquire, in communication with the real-world robot, state values of the real-world robot, state values of the robot simulation module, simultaneously update, by use of a predetermined optimization algorithm with the auto-tuning module, an estimate of one or more of the physical, and said control parameters, and store the updated parameters.
    Type: Grant
    Filed: March 27, 2021
    Date of Patent: May 7, 2024
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Siddarth Jain, Jeroen van Baar, Radu Ioan Corcodel, Alan Sullivan, Mouhacine Benosman
  • Patent number: 11794350
    Abstract: A controller is provided for interactive classification and recognition of an object in a scene using tactile feedback. The controller includes an interface configured to transmit and receive the control, sensor signals from a robot arm, gripper signals from a gripper attached to the robot arm, tactile signals from sensors attached to the gripper and at least one vision sensor, a memory module to store robot control programs, and a classifier and recognition model, and a processor to generate control signals based on the control program and a grasp pose on the object, configured to control the robot arm to grasp the object with the gripper.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: October 24, 2023
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Radu Ioan Corcodel, Siddarth Jain, Jeroen van Baar
  • Publication number: 20230330853
    Abstract: The present disclosure provides a system and a method for controlling a motion of a robot from a starting point to a target point within a bounded space with a floorplan including one or multiple obstacles. The method includes solving for an electric potential in a bounded virtual space formed by scaling the floorplan of the bounded space with the one or multiple obstacles and applying charge to at least one bound of the bounded virtual space while treating the scaled obstacles as metallic surfaces with a constant potential value, wherein the electric potential provides multiple equipotential curves within the bounded virtual space. The method further includes selecting an equipotential curve with a potential value different from a potential value of an obstacle equipotential curve, determining a motion path based on the selected equipotential curve, and controlling the motion of the robot based on the determined motion path.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 19, 2023
    Applicant: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Chungwei Lin, Yebin Wang, Rien Quirynen, Devesh Jha, Bingnan Wang, William Vetterling, Siddarth Jain, Scott Bortoff
  • Publication number: 20220305646
    Abstract: A system for parameter tuning for robotic manipulators is provided. The system includes an interface configured to receive a task specification, a plurality of physical parameters, and a plurality of control parameters, wherein the interface is configured to communicate with a real-world robot via a robot controller. The system further includes a memory to store computer-executable programs including a robot simulation module, a robot controller, and an auto-tuning module a processor, in connection with the memory. In this case, the processor is configured to acquire, in communication with the real-world robot, state values of the real-world robot, state values of the robot simulation module, simultaneously update, by use of a predetermined optimization algorithm with the auto-tuning module, an estimate of one or more of the physical, and said control parameters, and store the updated parameters.
    Type: Application
    Filed: March 27, 2021
    Publication date: September 29, 2022
    Applicant: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Siddarth Jain, Jeroen van Baar, Radu Ioan Corcodel, Alan Sullivan, Mouhacine Benosman
  • Publication number: 20220126453
    Abstract: A controller is provided for interactive classification and recognition of an object in a scene using tactile feedback. The controller includes an interface configured to transmit and receive the control, sensor signals from a robot arm, gripper signals from a gripper attached to the robot arm, tactile signals from sensors attached to the gripper and at least one vision sensor, a memory module to store robot control programs, and a classifier and recognition model, and a processor to generate control signals based on the control program and a grasp pose on the object, configured to control the robot arm to grasp the object with the gripper.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Radu Ioan Corcodel, Siddarth Jain, Jeroen van Baar