Patents by Inventor Siddha Pimputkar

Siddha Pimputkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885018
    Abstract: High pressure spatial chemical vapor deposition apparatuses and related process are disclosed for forming thin films on a substrate. An enclosure includes plural process chambers fluidly isolated from each other by radial separating barriers. Each chamber contains a different source gas comprising one or more volatile reactive species. The substrate is supported beneath the chambers on a rotating heated susceptor. Rotation of the susceptor carries the substrate in a path which consecutively exposes the substrate to the volatile reactive species in each process chamber. The gases first mix in the gaseous boundary layer formed adjacent the substrate. A thin film gradually grows in thickness on the substrate with each successive pass and exposure to the volatile reactive species in each of the individual process chambers. The film may be grown at high pressures exceeding 1 atmosphere in some implementations. A modular design includes an outer shell and different interchangeable process inserts.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: January 30, 2024
    Inventor: Siddha Pimputkar
  • Publication number: 20210371980
    Abstract: High pressure spatial chemical vapor deposition apparatuses and related process are disclosed for forming thin films on a substrate. An enclosure includes plural process chambers fluidly isolated from each other by radial separating barriers. Each chamber contains a different source gas comprising one or more volatile reactive species. The substrate is supported beneath the chambers on a rotating heated susceptor. Rotation of the susceptor carries the substrate in a path which consecutively exposes the substrate to the volatile reactive species in each process chamber. The gases first mix in the gaseous boundary layer formed adjacent the substrate. A thin film gradually grows in thickness on the substrate with each successive pass and exposure to the volatile reactive species in each of the individual process chambers. The film may be grown at high pressures exceeding 1 atmosphere in some implementations. A modular design includes an outer shell and different interchangeable process inserts.
    Type: Application
    Filed: September 24, 2019
    Publication date: December 2, 2021
    Inventor: Siddha PIMPUTKAR
  • Publication number: 20160194781
    Abstract: A method and apparatus for growing a Group-III nitride crystal using multiple interconnected reactor vessels to modify growth conditions during the ammonothermal growth of the Group-III nitride crystal, such that, by combining two or more vessels, it is possible to modify the conditions under which the Group-III nitride crystals are grown. In addition, the reactor vessel may use carbon fiber containing materials encapsulating oxide ceramic materials as structural elements to contain the materials for growing the Group-III nitride crystals at pressures or temperatures necessary for growth of the Group-III nitride crystals.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 7, 2016
    Applicant: The Regents of the University of California
    Inventors: Siddha Pimputkar, Shuji Nakamura, James S. Speck
  • Patent number: 9133564
    Abstract: An ammonothermal growth of group-III nitride crystals on starting seed crystals with at least two surfaces making an acute, right or obtuse angle, i.e., greater than 0 degrees and less than 180 degrees, with respect to each other, such that the exposed surfaces together form a concave surface.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: September 15, 2015
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, James S. Speck, Shuji Nakamura, Shin-Ichiro Kawabata
  • Publication number: 20140116326
    Abstract: Reactor designs for use in ammonothermal growth of group-III nitride crystals. Internal heating is used to enhance and/or engineer fluid motion, gas mixing, and the ability to create solubility gradients within a vessel used for the ammonothermal growth of group-III nitride crystals. Novel baffle designs are used for control and improvement of continuous fluid motion within a vessel used for the ammonothermal growth of group-III nitride crystals.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick Shane Kamber, James S. Speck, Shuji Nakamura
  • Patent number: 8641823
    Abstract: Reactor designs for use in ammonothermal growth of group-III nitride crystals. Internal heating is used to enhance and/or engineer fluid motion, gas mixing, and the ability to create solubility gradients within a vessel used for the ammonothermal growth of group-III nitride crystals. Novel baffle designs are used for control and improvement of continuous fluid motion within a vessel used for the ammonothermal growth of group-III nitride crystals.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: February 4, 2014
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20130340672
    Abstract: Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-III nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-III nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-III nitride into said fluid.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 26, 2013
    Applicant: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Patent number: 8574525
    Abstract: Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-Ill nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-Ill nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-Ill nitride into said fluid.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20130263775
    Abstract: A method and apparatus for growing crystals in a reactor vessel, wherein the reactor vessel uses carbon fiber containing materials as a structural element to contain the materials for growing the crystals as a solid, liquid or gas within the reactor vessel, such that the reactor vessel can withstand pressures or temperatures necessary for the growth of the crystals. The carbon fiber containing materials encapsulate at least one component of the reactor vessel, wherein stresses from the encapsulated component are transferred to the carbon fiber containing materials. The carbon fiber containing materials may be wrapped around the encapsulated component one or more times sufficient to maintain a desired pressure differential between an exterior and interior of the encapsulated component.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 10, 2013
    Applicant: The Regents of the University of California
    Inventors: Siddha Pimputkar, Paul Von Dollen, Shuji Nakamura, James S. Speck
  • Publication number: 20130015560
    Abstract: A method of producing a Group-III nitride crystal by coating at least one surface of the seed with a thin wetting layer or film comprised of one or more Group-III and alkali metals.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, James S. Speck
  • Publication number: 20120164386
    Abstract: An ammonothermal growth of group-III nitride crystals on starting seed crystals with at least two surfaces making an acute, right or obtuse angle, i.e., greater than 0 degrees and less than 180 degrees, with respect to each other, such that the exposed surfaces together form a concave surface.
    Type: Application
    Filed: October 28, 2011
    Publication date: June 28, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, James S. Speck, Shuji Nakamura, Shin-Ichiro Kawabata
  • Publication number: 20120103419
    Abstract: A group-III nitride solar cell is grown on a thin piece of a group-III nitride crystal that has been mounted on a carrier comprised of a foreign material. The thin piece is a thin layer with a thickness that ranges from approximately 5 microns to approximately 300 microns.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 3, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Shuji Nakamura, Steven P. DenBaars
  • Publication number: 20120063987
    Abstract: A method for ammonothermally growing group-III nitride crystals using an initially off-oriented non-polar and/or semi-polar growth surface on a group-III nitride seed crystal. Group-III-containing source materials and group-III nitride seed crystals are placed into a vessel, wherein the seed crystals have one or more non-polar or semi-polar growth surfaces. Group-III nitride crystals are ammonothermally grown by filling the vessel with a nitrogen-containing solvent for dissolving the source materials and transporting a fluid comprised of the solvent with the dissolved source materials to the seed crystals for growth of the group-III nitride crystals on the seed crystals. The growth surfaces are initially off-oriented growth surfaces, wherein the growth surfaces are off-oriented m-plane or highly vicinal m-plane growth surfaces. The growth surfaces of the seed crystals may be created by cutting group-III nitride crystals at a desired angle with respect to an m-plane.
    Type: Application
    Filed: March 15, 2011
    Publication date: March 15, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, James S. Speck, Shuji Nakamura
  • Publication number: 20110300051
    Abstract: A method to improve the crystal purity of a group-I11 nitride crystal grown in an ammonothermal growth system by removing any undesired material (i.e., impurities) from within the system prior to, in-between, or after the growth steps for the group-I11 nitride crystal. Impurities are removed from the ammonothermal growth system by first bringing the impurities into solution and then removing part or all of the solution from the growth system. The result is a high purity group-I11 nitride crystal grown in the ammonothermal growth system.
    Type: Application
    Filed: November 4, 2009
    Publication date: December 8, 2011
    Applicant: The Regents of the University of California
    Inventors: Derrick S. Kamber, Siddha Pimputkar, Makoto Saito, Steven P. Denbaars, James S. Speck, Shuji Nakamura
  • Publication number: 20110223092
    Abstract: Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-Ill nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-Ill nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-Ill nitride into said fluid.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 15, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20110220013
    Abstract: Reactor designs for use in ammonothermal growth of group-III nitride crystals. Internal heating is used to enhance and/or engineer fluid motion, gas mixing, and the ability to create solubility gradients within a vessel used for the ammonothermal growth of group-III nitride crystals. Novel baffle designs are used for control and improvement of continuous fluid motion within a vessel used for the ammonothermal growth of group-III nitride crystals.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 15, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20110209659
    Abstract: A method for controlling the relative and absolute growth rates of all possible crystallographic planes of a group-III nitride crystal during ammonothermal growth. The growth rates of the various exposed crystallographic planes of the group-III nitride crystal are controlled by modifying the environment and/or conditions within the reactor vessel, which may be subdivided into a plurality of separate zones, wherein each of the zones has their own environment and conditions. The environment includes the amount of atoms, compounds and/or chemical complexes within each of the zones, along with their relative ratios and the relative motion of the atoms, compounds and/or chemical complexes within each of the zones and among the zones. The conditions include the thermodynamic properties each of the zones possess, such as temperatures, pressures and/or densities.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 1, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20110212013
    Abstract: A method for adding hydrogen-containing and/or nitrogen-containing compounds to a nitrogen-containing solvent used during ammonothermal growth of group-Ill nitride crystals to offset decomposition products formed from the nitrogen-containing solvent, in order to shift the balance between the reactants, i.e. the nitrogen-containing solvent and the decomposition products, towards the reactant side.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 1, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20110203514
    Abstract: Reactor designs for use in ammonothermal growth of group-III nitride crystals envision a different relative placement of source materials and seed crystals with respect to each other, and with respect to the vessel containing a solvent. This placement results in a difference in fluid dynamical flow patterns within the vessel.
    Type: Application
    Filed: November 4, 2009
    Publication date: August 25, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20100111808
    Abstract: The present invention provides a method for growing group III-nitride crystals wherein the group III-nitride crystal growth occurs on an etched seed crystal. The etched seed is fabricated prior to growth using a temperature profile which produces a high solubility of the group III-nitride material in a seed crystals zone as compared to a source materials zone. The measured X-ray diffraction of the obtained crystals have significantly narrower Full Width at Half Maximum values as compared to crystals grown without etch back of the seed crystal surfaces prior to growth.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, Makoto Saito, Steven P. DenBaars, James S. Speck, Shuji Nakamura