Patents by Inventor Siddharth Chouksey
Siddharth Chouksey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12272727Abstract: Gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin, the fin including a defect modification layer on a first semiconductor layer, and a second semiconductor layer on the defect modification layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.Type: GrantFiled: February 13, 2024Date of Patent: April 8, 2025Assignee: Intel CorporationInventors: Cory Bomberger, Anand Murthy, Susmita Ghose, Siddharth Chouksey
-
Patent number: 12266570Abstract: An integrated circuit interconnect structure includes a metallization level above a first device level. The metallization level includes an interconnect structure coupled to the device structure, a conductive cap including an alloy of a metal of the interconnect structure and either silicon or germanium on an uppermost surface of the interconnect structure. A second device level above the conductive cap includes a transistor coupled with the conductive cap. The transistor includes a channel layer including a semiconductor material, where at least one sidewall of the conductive cap is co-planar with a sidewall of the channel layer. The transistor further includes a gate on a first portion of the channel layer, where the gate is between a source region and a drain region, where one of the source or the drain region is in contact with the conductive cap.Type: GrantFiled: December 23, 2020Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Kimin Jun, Souvik Ghosh, Willy Rachmady, Ashish Agrawal, Siddharth Chouksey, Jessica Torres, Jack Kavalieros, Matthew Metz, Ryan Keech, Koustav Ganguly, Anand Murthy
-
Publication number: 20250107174Abstract: Neighboring gate-all-around integrated circuit structures having a conductive contact stressor between epitaxial source or drain regions are described. In an example, a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening conductive contact structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures. The intervening conductive contact structure imparts a stress to the neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.Type: ApplicationFiled: December 11, 2024Publication date: March 27, 2025Inventors: Siddharth CHOUKSEY, Jack T. KAVALIEROS, Stephen M. CEA, Ashish AGRAWAL, Willy RACHMADY
-
Patent number: 12255234Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having germanium-based channels are described. In an example, an integrated circuit structure includes a fin having a lower silicon portion, an intermediate germanium portion on the lower silicon portion, and a silicon germanium portion on the intermediate germanium portion. An isolation structure is along sidewalls of the lower silicon portion of the fin. A gate stack is over a top of and along sidewalls of an upper portion of the fin and on a top surface of the isolation structure. A first source or drain structure is at a first side of the gate stack. A second source or drain structure is at a second side of the gate stack.Type: GrantFiled: January 10, 2024Date of Patent: March 18, 2025Assignee: Intel CorporationInventors: Siddharth Chouksey, Glenn Glass, Anand Murthy, Harold Kennel, Jack T. Kavalieros, Tahir Ghani, Ashish Agrawal, Seung Hoon Sung
-
Patent number: 12199142Abstract: Neighboring gate-all-around integrated circuit structures having a conductive contact stressor between epitaxial source or drain regions are described. In an example, a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening conductive contact structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures. The intervening conductive contact structure imparts a stress to the neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.Type: GrantFiled: December 23, 2020Date of Patent: January 14, 2025Assignee: Intel CorporationInventors: Siddharth Chouksey, Jack T. Kavalieros, Stephen M. Cea, Ashish Agrawal, Willy Rachmady
-
Patent number: 12119387Abstract: Low resistance approaches for fabricating contacts, and semiconductor structures having low resistance metal contacts, are described. In an example, an integrated circuit structure includes a semiconductor structure above a substrate. A gate electrode is over the semiconductor structure, the gate electrode defining a channel region in the semiconductor structure. A first semiconductor source or drain structure is at a first end of the channel region at a first side of the gate electrode. A second semiconductor source or drain structure is at a second end of the channel region at a second side of the gate electrode, the second end opposite the first end. A source or drain contact is directly on the first or second semiconductor source or drain structure, the source or drain contact including a barrier layer and an inner conductive structure.Type: GrantFiled: September 25, 2020Date of Patent: October 15, 2024Assignee: Intel CorporationInventors: Gilbert Dewey, Nazila Haratipour, Siddharth Chouksey, Jack T. Kavalieros, Jitendra Kumar Jha, Matthew V. Metz, Mengcheng Lu, Anand S. Murthy, Koustav Ganguly, Ryan Keech, Glenn A. Glass, Arnab Sen Gupta
-
Publication number: 20240186378Abstract: Gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin, the fin including a defect modification layer on a first semiconductor layer, and a second semiconductor layer on the defect modification layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.Type: ApplicationFiled: February 13, 2024Publication date: June 6, 2024Inventors: Cory BOMBERGER, Anand MURTHY, Susmita GHOSE, Siddharth CHOUKSEY
-
Patent number: 11990513Abstract: Gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having embedded GeSnB source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin, the fin including a defect modification layer on a first semiconductor layer, and a second semiconductor layer on the defect modification layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.Type: GrantFiled: November 16, 2022Date of Patent: May 21, 2024Assignee: Intel CorporationInventors: Cory Bomberger, Anand Murthy, Susmita Ghose, Siddharth Chouksey
-
Publication number: 20240145549Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having germanium-based channels are described. In an example, an integrated circuit structure includes a fin having a lower silicon portion, an intermediate germanium portion on the lower silicon portion, and a silicon germanium portion on the intermediate germanium portion. An isolation structure is along sidewalls of the lower silicon portion of the fin. A gate stack is over a top of and along sidewalls of an upper portion of the fin and on a top surface of the isolation structure. A first source or drain structure is at a first side of the gate stack. A second source or drain structure is at a second side of the gate stack.Type: ApplicationFiled: January 10, 2024Publication date: May 2, 2024Inventors: Siddharth CHOUKSEY, Glenn GLASS, Anand MURTHY, Harold KENNEL, Jack T. KAVALIEROS, Tahir GHANI, Ashish AGRAWAL, Seung Hoon SUNG
-
Publication number: 20240105508Abstract: Disclosed herein are integrated circuit (IC) devices with contacts using nitridized molybdenum. For example, a contact arrangement for an IC device may include a semiconductor material and a contact extending into a portion of the semiconductor material. The contact may include molybdenum. The molybdenum may be in a first layer and a second layer, where the second layer may further include nitrogen. The first layer may have a thickness between about 5 nanometers and 16 nanometers, and the second layer may have a thickness between about 0.5 nanometers to 2.5 nanometers. The contact may further include a fill material (e.g., an electrically conductive material) and the second layer may be in contact with the fill material. The molybdenum may have a low resistance, and thus may improve the electrical performance of the contact. The nitridized molybdenum may prevent oxidation during the fabrication of the contact.Type: ApplicationFiled: September 27, 2022Publication date: March 28, 2024Applicant: Intel CorporationInventors: Jitendra Kumar Jha, Justin Mueller, Nazila Haratipour, Gilbert W. Dewey, Chi-Hing Choi, Jack T. Kavalieros, Siddharth Chouksey, Nancy Zelick, Jean-Philippe Turmaud, I-Cheng Tung, Blake Bluestein
-
Patent number: 11923290Abstract: Embodiments disclosed herein include semiconductor devices with source/drain interconnects that include a barrier layer. In an embodiment the semiconductor device comprises a source region and a drain region. In an embodiment, a semiconductor channel is between the source region and the drain region, and a gate electrode is over the semiconductor channel. In an embodiment, the semiconductor device further comprises interconnects to the source region and the drain region. In an embodiment, the interconnects comprise a barrier layer, a metal layer, and a fill metal.Type: GrantFiled: June 26, 2020Date of Patent: March 5, 2024Assignee: Intel CorporationInventors: Siddharth Chouksey, Gilbert Dewey, Nazila Haratipour, Mengcheng Lu, Jitendra Kumar Jha, Jack T. Kavalieros, Matthew V. Metz, Scott B Clendenning, Eric Charles Mattson
-
Patent number: 11923421Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having germanium-based channels are described. In an example, an integrated circuit structure includes a fin having a lower silicon portion, an intermediate germanium portion on the lower silicon portion, and a silicon germanium portion on the intermediate germanium portion. An isolation structure is along sidewalls of the lower silicon portion of the fin. A gate stack is over a top of and along sidewalls of an upper portion of the fin and on a top surface of the isolation structure. A first source or drain structure is at a first side of the gate stack. A second source or drain structure is at a second side of the gate stack.Type: GrantFiled: July 20, 2022Date of Patent: March 5, 2024Assignee: Intel CorporationInventors: Siddharth Chouksey, Glenn Glass, Anand Murthy, Harold Kennel, Jack T. Kavalieros, Tahir Ghani, Ashish Agrawal, Seung Hoon Sung
-
Publication number: 20240006494Abstract: Semiconductor structures having a source and/or drain with a refractory metal cap, and methods of forming the same, are described herein. In one example, a semiconductor structure includes a channel, a gate, a source, and a drain. The source and drain contain silicon and germanium, and one or both of the source and drain are capped with a semiconductor cap and a refractory metal cap. The semiconductor cap is on the source and/or drain and contains germanium and boron. The refractory metal cap is on the semiconductor cap and contains a refractory metal.Type: ApplicationFiled: July 1, 2022Publication date: January 4, 2024Applicant: Intel CorporationInventors: Nazila Haratipour, Gilbert Dewey, Nancy Zelick, Siddharth Chouksey, I-Cheng Tung, Arnab Sen Gupta, Jitendra Kumar Jha, Chi-Hing Choi, Matthew V. Metz, Jack T. Kavalieros
-
Publication number: 20240006506Abstract: Contacts to n-type source/drain regions comprise a phosphide or arsenide metal compound layer. The phosphide or arsenide metal compound layers can aid in forming thermally stable low resistance contacts. A phosphide or arsenide metal compound layer is positioned between the source/drain region and the contact metal layer of the contact. A phosphide or arsenic metal compound layer can be used in contacts contacting n-type source/drain regions comprising phosphorous or arsenic as the primary dopant, respectively. The phosphide or arsenide metal compound layers prevent diffusion of phosphorous or arsenic from the source/drain region into the metal contact layer and dopant deactivation in the source/drain region due to annealing and other high-temperature processing steps that occur after contact formation.Type: ApplicationFiled: July 2, 2022Publication date: January 4, 2024Applicant: Intel CorporationInventors: Gilbert Dewey, Siddharth Chouksey, Nazila Haratipour, Christopher Jezewski, Jitendra Kumar Jha, Ilya V. Karpov, Jack T. Kavalieros, Arnab Sen Gupta, I-Cheng Tung, Nancy Zelick, Chi-Hing Choi, Dan S. Lavric
-
Publication number: 20240006533Abstract: Contacts to p-type source/drain regions comprise a boride, indium, or gallium metal compound layer. The boride, indium, or gallium metal compound layers can aid in forming thermally stable low resistance contacts. A boride, indium, or gallium metal compound layer is positioned between the source/drain region and the contact metal layer. A boride, indium, or gallium metal compound layer can be used in contacts contacting p-type source/drain regions comprising boron, indium, or gallium as the primary dopant, respectively. The boride, indium, or gallium metal compound layers prevent diffusion of boron, indium, or gallium from the source/drain region into the metal contact layer and dopant deactivation in the source/drain region due to annealing and other high-temperature processing steps that occur after contact formation.Type: ApplicationFiled: July 2, 2022Publication date: January 4, 2024Applicant: Intel CorporationInventors: Gilbert Dewey, Siddharth Chouksey, Nazila Haratipour, Christopher Jezewski, Jitendra Kumar Jha, Ilya V. Karpov, Matthew V. Metz, Arnab Sen Gupta, I-Cheng Tung, Nancy Zelick, Chi-Hing Choi, Dan S. Lavric
-
Publication number: 20240006488Abstract: In one embodiment, layers comprising Carbon (e.g., Silicon Carbide) are on source/drain regions of a transistor, e.g., before gate formation and metallization, and the layers comprising Carbon are later removed in the manufacturing process to form electrical contacts on the source/drain regions.Type: ApplicationFiled: July 1, 2022Publication date: January 4, 2024Applicant: Intel CorporationInventors: Nazila Haratipour, Gilbert Dewey, Nancy Zelick, Siddharth Chouksey, I-Cheng Tung, Arnab Sen Gupta, Jitendra Kumar Jha, David Kohen, Natalie Briggs, Chi-Hing Choi, Matthew V. Metz, Jack T. Kavalieros
-
Patent number: 11735670Abstract: Integrated circuit transistor structures and processes are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent channel regions during fabrication. The n-MOS transistor device may include at least 70% germanium (Ge) by atomic percentage. In an example embodiment, source and drain regions of the transistor are formed using a low temperature, non-selective deposition process of n-type doped material. In some embodiments, the low temperature deposition process is performed in the range of 450 to 600 degrees C. The resulting structure includes a layer of doped mono-crystyalline silicon (Si), or silicon germanium (SiGe), on the source/drain regions. The structure also includes a layer of doped amorphous Si:P (or SiGe:P) on the surfaces of a shallow trench isolation (STI) region and the surfaces of contact trench sidewalls.Type: GrantFiled: October 8, 2021Date of Patent: August 22, 2023Assignee: Intel CorporationInventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
-
Patent number: 11699756Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent shallow trench isolation (STI) regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, the structure includes an intervening diffusion barrier deposited between the n-MOS transistor and the STI region to provide dopant diffusion reduction. In some embodiments, the diffusion barrier may include silicon dioxide with carbon concentrations between 5 and 50% by atomic percentage. In some embodiments, the diffusion barrier may be deposited using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) techniques to achieve a diffusion barrier thickness in the range of 1 to 5 nanometers.Type: GrantFiled: December 2, 2021Date of Patent: July 11, 2023Assignee: Intel CorporationInventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
-
Publication number: 20230187553Abstract: Described herein are integrated circuit devices with source and drain (S/D) contacts with barrier regions. The S/D contacts conduct current to and from semiconductor devices, e.g., to the source and drain regions of a transistor. The barrier regions are formed between the S/D region and an inner conductive structure and reduce the Schottky barrier height between the S/D region and the contact. The barrier regions may include one or more carbon layers and one or more metal layers. A metal layer may include niobium, tantalum, aluminum, or titanium.Type: ApplicationFiled: December 9, 2021Publication date: June 15, 2023Applicant: Intel CorporationInventors: Arnab Sen Gupta, Gilbert W. Dewey, Siddharth Chouksey, Nazila Haratipour, Jack T. Kavalieros, Matthew V. Metz, Scott B. Clendenning, Jason C. Retasket, Edward O. Johnson, JR.
-
Publication number: 20230139255Abstract: A gate-all-around transistor device includes a body including a semiconductor material, and a gate structure at least in part wrapped around the body. The gate structure includes a gate electrode and a gate dielectric between the body and the gate electrode. The body is between a source region and a drain region. A first spacer is between the source region and the gate electrode, and a second spacer is between the drain region and the gate electrode. In an example, the first and second spacers include germanium and oxygen. The body can be, for instance, a nanoribbon, nanosheet, or nanowire.Type: ApplicationFiled: November 2, 2021Publication date: May 4, 2023Applicant: Intel CorporationInventors: Ashish Agrawal, Gilbert Dewey, Siddharth Chouksey, Jack T. Kavalieros, Cheng-Ying Huang