Patents by Inventor Siegmar Schmidt

Siegmar Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210268270
    Abstract: A lead comprising a lead body, a lead connector terminal affixed to a proximal end of the lead body, and a cuff body affixed to a distal end of the lead body, an electrode contact affixed to the cuff body, and an electrical conductor between the connector terminal and electrode contact. The lead further comprises a strap extending from a first region of the cuff body, a buckle disposed on a second region of the cuff body, and a locking feature, e.g., protuberance, ring, or wrinkle, associated with the strap. The locking feature is configured for being pulled through the buckle to dispose the cuff body around a nerve in response to a tensile force applied to the strap. The locking feature is configured for abutting an edge of the buckle in response to a release of the tensile force to secure the cuff body around the nerve.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 2, 2021
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Boon Khai Ng, Siegmar Schmidt
  • Publication number: 20210052893
    Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.
    Type: Application
    Filed: November 6, 2020
    Publication date: February 25, 2021
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Harshit Suri, Joseph L. Cakleron, Gregory Frederick Moinar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
  • Publication number: 20210038889
    Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.
    Type: Application
    Filed: October 29, 2020
    Publication date: February 11, 2021
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
  • Publication number: 20200368526
    Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.
    Type: Application
    Filed: August 13, 2020
    Publication date: November 26, 2020
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
  • Publication number: 20200355567
    Abstract: Pressure sensors having ring-tensioned membranes are disclosed. A tensioning ring is bonded to a membrane in a manner that results in the tensioning ring applying a tensile force to the membrane, flattening the membrane and reducing or eliminating defects that may have occurred during production. The membrane is bonded to the sensor housing at a point outside the tensioning ring, preventing the process of bonding the membrane to the housing from introducing defects into the tensioned portion of the membrane. A dielectric may be introduced into the gap between the membrane and the counter electrode in a capacitive pressure sensor, resulting in an improved dynamic range.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Inventors: Siegmar SCHMIDT, William A. DAI, Boon Khai NG
  • Patent number: 10739218
    Abstract: Pressure sensors having ring-tensioned membranes are disclosed. A tensioning ring is bonded to a membrane in a manner that results in the tensioning ring applying a tensile force to the membrane, flattening the membrane and reducing or eliminating defects that may have occurred during production. The membrane is bonded to the sensor housing at a point outside the tensioning ring, preventing the process of bonding the membrane to the housing from introducing defects into the tensioned portion of the membrane. A dielectric may be introduced into the gap between the membrane and the counter electrode in a capacitive pressure sensor, resulting in an improved dynamic range.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: August 11, 2020
    Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Siegmar Schmidt, William A. Dai, Boon Khai Ng
  • Publication number: 20200206501
    Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Harshit Suri, Joseph L Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
  • Patent number: 10687719
    Abstract: A hermetically sealed biocompatible pressure sensor module configured for implant at a desired site at which a pressure is to be measured. Anodic bonding of the pressure module package components which have similar thermal coefficients of expansion provides low stress bonding and maintains long term reliability, dependability and accuracy. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. Operating power for the pressure sensor module is provided by the external controller and an internal rechargeable energy storage component. Accordingly, the pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: June 23, 2020
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Publication number: 20190282805
    Abstract: An electrode lead may comprise a flexible circuit that includes a planar dielectric substrate including an elongated lead substrate portion having opposing ends, an electrode carrying substrate portion disposed on one end of the lead substrate portion, and a connector substrate portion disposed on the other end of the lead substrate portion, wherein the lead substrate portion is pre-shaped into a three-dimensional structure. The flexible circuit may further include an electrically conductive trace extending from the connector substrate portion to the electrode carrying substrate portion, a first window formed in the connector substrate portion to expose the electrically conductive trace to form a connector pad, and a second window formed in the electrode carrying substrate portion to expose the electrically conductive trace to form an electrode pad. The electrode lead may further comprise a lead connector that incorporates the connector substrate portion.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Siegmar Schmidt, Boon Khai Ng
  • Publication number: 20190143110
    Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, JR., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
  • Publication number: 20180318577
    Abstract: A lead comprising a lead body, a lead connector terminal affixed to a proximal end of the lead body, and a cuff body affixed to a distal end of the lead body, an electrode contact affixed to the cuff body, and an electrical conductor between the connector terminal and electrode contact. The lead further comprises a strap extending from a first region of the cuff body, a buckle disposed on a second region of the cuff body, and a locking feature, e.g., protuberance, ring, or wrinkle, associated with the strap. The locking feature is configured for being pulled through the buckle to dispose the cuff body around a nerve in response to a tensile force applied to the strap. The locking feature is configured for abutting an edge of the buckle in response to a release of the tensile force to secure the cuff body around the nerve.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 8, 2018
    Inventors: Boon Khai Ng, Siegmar Schmidt
  • Publication number: 20180221660
    Abstract: An electrode lead comprises an electrically insulative cuff body and at least three axially aligned electrode contacts circumferentially disposed along the inner surface of the cuff body when in the furled state. The electrode contacts may be circumferentially disposed around a nerve, and an electrical pulse train may be delivered to the electrode contacts thereby stimulating the nerve to treat obstructive sleep apnea. The electrical pulse train may be one that pre-conditions peripherally located nerve fascicles to not be stimulated, while stimulating centrally located nerve fascicles. A feedback mechanism can be used to titrate electrode contacts and electrical pulse train to the patient. A sensor that is affixed to the case of a neurostimulator can be used to measure physiological artifacts of respiration, and a motion detector can be used to sense tapping of the neurostimulator to toggle the neurostimulator between an ON position and an OFF position.
    Type: Application
    Filed: January 31, 2018
    Publication date: August 9, 2018
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Harshit Suri, Joseph L. Calderon, Gregory Frederick Molnar, George S. Goding, Jr., Alanie Atyabi, Siegmar Schmidt, William Dai, Brian Dearden, Desmond B. Keenan
  • Publication number: 20180117313
    Abstract: An electrode lead may comprise a flexible circuit that includes a planar dielectric substrate including an elongated lead substrate portion having opposing ends, an electrode carrying substrate portion disposed on one end of the lead substrate portion, and a connector substrate portion disposed on the other end of the lead substrate portion, wherein the lead substrate portion is pre-shaped into a three-dimensional structure. The flexible circuit may further include an electrically conductive trace extending from the connector substrate portion to the electrode carrying substrate portion, a first window formed in the connector substrate portion to expose the electrically conductive trace to form a connector pad, and a second window formed in the electrode carrying substrate portion to expose the electrically conductive trace to form an electrode pad. The electrode lead may further comprise a lead connector that incorporates the connector substrate portion.
    Type: Application
    Filed: June 27, 2017
    Publication date: May 3, 2018
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Siegmar Schmidt, Boon Khai Ng
  • Publication number: 20180117312
    Abstract: An electrode lead may comprise a flexible circuit that includes a planar dielectric substrate including an elongated lead substrate portion having opposing ends, an electrode carrying substrate portion disposed on one end of the lead substrate portion, and a connector substrate portion disposed on the other end of the lead substrate portion, wherein the lead substrate portion is pre-shaped into a three-dimensional structure. The flexible circuit may further include an electrically conductive trace extending from the connector substrate portion to the electrode carrying substrate portion, a first window formed in the connector substrate portion to expose the electrically conductive trace to form a connector pad, and a second window formed in the electrode carrying substrate portion to expose the electrically conductive trace to form an electrode pad. The electrode lead may further comprise a lead connector that incorporates the connector substrate portion.
    Type: Application
    Filed: June 27, 2017
    Publication date: May 3, 2018
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Siegmar Schmidt, Boon Khai Ng, Brian R. Dearden, Morten Hansen
  • Publication number: 20170354337
    Abstract: A hermetically sealed biocompatible pressure sensor module configured for implant at a desired site at which a pressure is to be measured. Anodic bonding of the pressure module package components which have similar thermal coefficients of expansion provides low stress bonding and maintains long term reliability, dependability and accuracy. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. Operating power for the pressure sensor module is provided by the external controller and an internal rechargeable energy storage component. Accordingly, the pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system.
    Type: Application
    Filed: July 3, 2017
    Publication date: December 14, 2017
    Inventors: Siegmar Schmidt, Charles L. Byers, Jiang Guangqiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Publication number: 20170292887
    Abstract: Pressure sensors having ring-tensioned membranes are disclosed. A tensioning ring is bonded to a membrane in a manner that results in the tensioning ring applying a tensile force to the membrane, flattening the membrane and reducing or eliminating defects that may have occurred during production. The membrane is bonded to the sensor housing at a point outside the tensioning ring, preventing the process of bonding the membrane to the housing from introducing defects into the tensioned portion of the membrane. A dielectric may be introduced into the gap between the membrane and the counter electrode in a capacitive pressure sensor, resulting in an improved dynamic range.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 12, 2017
    Inventors: Siegmar Schmidt, William A. Dai, Boon Khai NG
  • Patent number: 9713429
    Abstract: A pressure sensor module configured for implant at a desired site at which a pressure is to be measured. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. The pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system. An exemplary use is in a three pressure sensor system including a flow control valve in a shunt to treat hydrocephalus. An embodiment of the invention includes a pressure sensor and associated electromagnetic coils embedded in the tip portion of the shunt for measuring the pressure of fluid externally of the shunt at the tip portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 25, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Publication number: 20170202513
    Abstract: An implantable pressure sensor device and devices incorporating an implantable pressure sensor are disclosed. The implantable pressure sensor may include a housing with a deflectable wall, and may be incorporated into a housing of an implantable medical device such as an implantable pulse generator. The pressure sensor may monitor respiration by measuring the deflection of the deflectable wall caused by expansion of the thoracic wall or ribcage.
    Type: Application
    Filed: December 9, 2016
    Publication date: July 20, 2017
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Siegmar Schmidt, William A. Dai
  • Patent number: 9675807
    Abstract: Methods of making an implantable pulse generator are disclosed herein. The implantable pulse generator can include a body defining an internal volume and a plurality of wires extending from out of the internal volume of the body. Some of these wires can be connected, either directly or indirectly to a lead via a welded joint. The welded joint can be created by first resistance welding and then laser welding some of the wires to a connector.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: June 13, 2017
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventor: Siegmar Schmidt
  • Publication number: 20160354602
    Abstract: An upper airway stimulator for treating obstructive sleep apnea is described. In some embodiments, the upper airway stimulator monitors the phase difference between ribcage expansion and abdomen expansion to detect apneic events and stimulates to alleviate those events. In some embodiments, the upper airway stimulator applies primary stimulation when an apneic event is not detected and secondary stimulation when an apneic event is detected. In some embodiments, the upper airway stimulator applies primary stimulation when the patient is not in an apneic position and secondary stimulation when the patient is in an apneic position.
    Type: Application
    Filed: April 7, 2016
    Publication date: December 8, 2016
    Applicant: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: DESMOND B. KEENAN, MORTEN HANSEN, BRIAN R. DEARDEN, SIEGMAR SCHMIDT, WILLIAM A. DAI