Patents by Inventor Siew S. Neo

Siew S. Neo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7790015
    Abstract: Method for process control of electro-processes is provided. In one embodiment, the method includes processing a conductive layer formed on a wafer using a target endpoint, detecting breakthrough of the conductive layer to expose portions of an underlying layer, and adjusting the target endpoint in response to the detected breakthrough. In another embodiment, the target endpoint is adjusted relative to an amount of underlying layer exposed through the conductive layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yan Wang, Antoine P. Manens, Siew S. Neo, Alain Duboust, Liang-Yuh Chen
  • Patent number: 7628905
    Abstract: Method and apparatus for process control of electro-processes. The method includes electro-processing a wafer by the application of two or more biases and determining an amount of charge removed as a result of each bias, separately. In one embodiment, an endpoint is determined for each bias when the amount of charge removed for a bias substantially equals a respective target charge calculated for the bias.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: December 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Antoine P. Manens, Alain Duboust, Siew S. Neo, Liang-Yuh Chen
  • Patent number: 7422516
    Abstract: Embodiments of a polishing article for polishing a substrate are provided. In one embodiment, the polishing article includes an annular upper layer made of a dielectric material coupled to an annular lower layer made of a conductive material, and an annular subpad sandwiched between the annular upper layer and the annular lower layer forming a replaceable assembly therewith.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Paul D. Butterfield, Liang-Yuh Chen, Yonqi Hu, Antoine P. Manens, Rashid Mavliev, Stan D. Tsai, Feng Q. Liu, Ralph Wadensweiler, Lizhong Sun, Siew S. Neo, Alain Duboust
  • Patent number: 7278911
    Abstract: Embodiments of a polishing article for polishing a substrate are provided. In one embodiment, the polishing article includes a ring-shaped upper layer having a polishing surface, and a conductive layer coupled to the upper layer and forming a replaceable assembly therewith.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 9, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Paul D. Butterfield, Liang-Yuh Chen, Yonqi Hu, Antoine P. Manens, Rashid Mavliev, Stan D. Tsai, Feng Q. Liu, Ralph Wadensweiler, Lizhong Sun, Siew S. Neo, Alain Duboust
  • Patent number: 7232514
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 19, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Stan D. Tsai, Yongqi Hu, Siew S. Neo, Yan Wang, Alain Duboust, Liang-Yuh Chen
  • Patent number: 7229535
    Abstract: An apparatus and method for planarizing a surface of a substrate using a chamber separated into two parts by a membrane, and two separate electrolytes is provided. The embodiments of the present invention generally provide an electrochemical mechanical polishing system that reduces the number of defects found on the substrate surface after polishing. An exemplary electrochemical apparatus includes a physical barrier that prevents any trapped gas or gas generated during processing from residing in areas that can cause defects on the substrate. The process can be aided by the addition of various chemical components to the electrolyte that tend to reduce the gas generation at the cathode surface during the ECMP anodic dissolution process.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 12, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Yan Wang, Feng Q. Liu, Alain Duboust, Siew S. Neo, Liang-Yuh Chen, Yongqi Hu
  • Patent number: 7207878
    Abstract: Embodiments of a polishing article for processing a substrate are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer has an exposed surface adapted to polish a substrate. The fabric layer may be woven or non-woven. The conductive layer may be comprised of a soft metal and, in one embodiment, the exposed surface may be planar.
    Type: Grant
    Filed: January 8, 2005
    Date of Patent: April 24, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Yongqi Hu, Yan Wang, Alain Duboust, Feng Q. Liu, Antoine P. Manens, Siew S. Neo, Stan D. Tsai, Liang-Yuh Chen, Paul D. Butterfield, Yuan A. Tian, Sen-Hou Ko
  • Patent number: 7160432
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a method is provided for processing a substrate to remove conductive material disposed over narrow feature definitions formed in a substrate at a higher removal rate than conductive material disposed over wide feature definitions formed in a substrate by an electrochemical mechanical polishing technique. The electrochemical mechanical polishing technique may include a polishing composition comprising an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, and a solvent.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: January 9, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Liang-Yuh Chen, Stan D. Tsai, Alain Duboust, Siew S. Neo, Yongqi Hu, Yan Wang, Paul D. Butterfield
  • Patent number: 7128825
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 3 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: October 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Stan D. Tsai, Yongqi Hu, Siew S. Neo, Yan Wang, Alain Duboust, Liang-Yuh Chen
  • Patent number: 7112270
    Abstract: Method and apparatus for process control of electro-processes. The method includes electro-processing a wafer by the application of two or more biases and determining an amount of charge removed as a result of each bias, separately. In one embodiment, an endpoint is determined for each bias when the amount of charge removed for a bias substantially equals a respective target charge calculated for the bias.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: September 26, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Antoine P. Manens, Alain Duboust, Siew S. Neo, Liang-Yuh Chen
  • Patent number: 6991528
    Abstract: Embodiments of a polishing article for processing a substrate are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer has an exposed surface adapted to polish a substrate. The fabric layer may be woven or non-woven. The conductive layer may be comprised of a soft metal and, in one embodiment, the exposed surface may be planar.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yongqi Hu, Yan Wang, Alain Duboust, Feng Q. Liu, Antoine P. Manens, Siew S. Neo, Stan D. Tsai, Liang-Yuh Chen, Paul D. Butterfield, Yuan A. Tian, Sen-Hou Ko
  • Patent number: 6962524
    Abstract: Embodiments of a ball assembly are provided. In one embodiment, a ball assembly includes a housing, a ball, a conductive adapter and a contact element. The housing has an annular seat extending into a first end of an interior passage. The conductive adapter is coupled to a second end of the housing. The contact element electrically couples the adapter and the ball with is retained in the housing between seat and the adapter.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: November 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Paul D. Butterfield, Liang-Yuh Chen, Yonqi Hu, Antoine P. Manens, Rashid Mavliev, Stan D. Tsai, Feng Q. Liu, Ralph Wadensweiler, Lizhong Sun, Siew S. Neo, Alain Duboust
  • Publication number: 20040082289
    Abstract: Embodiments of a ball assembly are provided. In one embodiment, a ball assembly includes a housing, a ball, a conductive adapter and a contact element. The housing has an annular seat extending into a first end of an interior passage. The conductive adapter is coupled to a second end of the housing. The contact element electrically couples the adapter and the ball with is retained in the housing between seat and the adapter.
    Type: Application
    Filed: August 15, 2003
    Publication date: April 29, 2004
    Inventors: Paul D. Butterfield, Liang-Yuh Chen, Yongqi Hu, Antoine P. Manens, Rashid Mavliev, Stan D. Tsai, Feng Q. Liu, Ralph Wadensweiler, Lizhong Sun, Siew S. Neo, Alain Duboust
  • Publication number: 20040072445
    Abstract: The present invention generally is directed to a method of electrochemically and mechanically planarizing a surface of a substrate, comprising: providing a basin containing an electrically conductive solution and an electrode disposed therein, disposing a polishing medium in the electrically conductive solution, positioning a substrate against the polishing medium so that a surface of the substrate contacts the electrically conductive solution, applying a first potential between the polishing medium and the electrode for a first time period, and applying a second potential between the polishing medium and the electrode for a second time period.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 15, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Lizhong Sun, Feng Q. Liu, Siew S. Neo, Yan Wang, Stan D. Tsai, Liang-Yuh Chen
  • Publication number: 20040053499
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a method is provided for processing a substrate to remove conductive material disposed over narrow feature definitions formed in a substrate at a higher removal rate than conductive material disposed over wide feature definitions formed in a substrate by an electrochemical mechanical polishing technique. The electrochemical mechanical polishing technique may include a polishing composition comprising an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, and a solvent.
    Type: Application
    Filed: June 26, 2003
    Publication date: March 18, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Liang-Yuh Chen, Stan D. Tsai, Alain Duboust, Siew S. Neo, Yongqi Hu, Yan Wang, Paul D. Butterfield
  • Publication number: 20040023610
    Abstract: Embodiments of a polishing article for processing a substrate are provided. In one embodiment, a polishing article for processing a substrate comprises a fabric layer having a conductive layer disposed thereover. The conductive layer has an exposed surface adapted to polish a substrate. The fabric layer may be woven or non-woven. The conductive layer may be comprised of a soft metal and, in one embodiment, the exposed surface may be planar.
    Type: Application
    Filed: June 6, 2003
    Publication date: February 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Yongqi Hu, Yan Wang, Alain Duboust, Feng Q. Liu, Antoine P. Manens, Siew S. Neo, Stan D. Tsai, Liang-Yuh Chen, Paul D. Butterfield, Yuan A. Tian, Sen-Hou Ko
  • Publication number: 20030234184
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 2 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 25, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Stan D. Tsai, Yongqi Hu, Siew S. Neo, Yan Wang, Alain Duboust, Liang-Yuh Chen
  • Publication number: 20030216045
    Abstract: An apparatus and method for planarizing a surface of a substrate using a chamber separated into two parts by a membrane, and two separate electrolytes is provided. The embodiments of the present invention generally provide an electrochemical mechanical polishing system that reduces the number of defects found on the substrate surface after polishing. An exemplary electrochemical apparatus includes a physical barrier that prevents any trapped gas or gas generated during processing from residing in areas that can cause defects on the substrate. The process can be aided by the addition of various chemical components to the electrolyte that tend to reduce the gas generation at the cathode surface during the ECMP anodic dissolution process.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 20, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yan Wang, Feng Q. Liu, Alain Duboust, Siew S. Neo, Liang-Yuh Chen, Yongqi Hu
  • Publication number: 20030178320
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. In one aspect, a composition includes an acid based electrolyte system, one or more chelating agents, one or more corrosion inhibitors, one or more inorganic or organic acid salts, one or more pH adjusting agents to provide a pH between about 3 and about 10, a polishing enhancing material selected from the group of abrasive particles, one or more oxidizers, and combinations thereof, and a solvent. The composition may be used in an conductive material removal process including disposing a substrate having a conductive material layer formed thereon in a process apparatus comprising an electrode, providing the composition between the electrode and substrate, applying a bias between the electrode and the substrate, and removing conductive material from the conductive material layer.
    Type: Application
    Filed: February 26, 2003
    Publication date: September 25, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Feng Q. Liu, Stan D. Tsai, Yongqi Hu, Siew S. Neo, Yan Wang, Alain Duboust, Liang-Yuh Chen