Patents by Inventor Sifei Liu

Sifei Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153093
    Abstract: An open-vocabulary diffusion-based panoptic segmentation system is not limited to perform segmentation using only object categories seen during training, and instead can also successfully perform segmentation of object categories not seen during training and only seen during testing and inferencing. In contrast with conventional techniques, a text-conditioned diffusion (generative) model is used to perform the segmentation. The text-conditioned diffusion model is pre-trained to generate images from text captions, including computing internal representations that provide spatially well-differentiated object features. The internal representations computed within the diffusion model comprise object masks and a semantic visual representation of the object. The semantic visual representation may be extracted from the diffusion model and used in conjunction with a text representation of a category label to classify the object.
    Type: Application
    Filed: May 1, 2023
    Publication date: May 9, 2024
    Inventors: Jiarui Xu, Shalini De Mello, Sifei Liu, Arash Vahdat, Wonmin Byeon
  • Patent number: 11960570
    Abstract: A multi-level contrastive training strategy for training a neural network relies on image pairs (no other labels) to learn semantic correspondences at the image level and region or pixel level. The neural network is trained using contrasting image pairs including different objects and corresponding image pairs including different views of the same object. Conceptually, contrastive training pulls corresponding image pairs closer and pushes contrasting image pairs apart. An image-level contrastive loss is computed from the outputs (predictions) of the neural network and used to update parameters (weights) of the neural network via backpropagation. The neural network is also trained via pixel-level contrastive learning using only image pairs. Pixel-level contrastive learning receives an image pair, where each image includes an object in a particular category.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: April 16, 2024
    Assignee: NVIDIA Corporation
    Inventors: Taihong Xiao, Sifei Liu, Shalini De Mello, Zhiding Yu, Jan Kautz
  • Publication number: 20240070987
    Abstract: Transferring pose to three-dimensional characters is a common computer graphics task that typically involves transferring the pose of a reference avatar to a (stylized) three-dimensional character. Since three-dimensional characters are created by professional artists through imagination and exaggeration, and therefore, unlike human or animal avatars, have distinct shape and features, matching the pose of a three-dimensional character to that of a reference avatar generally requires manually creating shape information for the three-dimensional character that is required for pose transfer. The present disclosure provides for the automated transfer of a reference pose to a three-dimensional character, based specifically on a learned shape code for the three-dimensional character.
    Type: Application
    Filed: February 15, 2023
    Publication date: February 29, 2024
    Inventors: Xueting Li, Sifei Liu, Shalini De Mello, Orazio Gallo, Jiashun Wang, Jan Kautz
  • Patent number: 11907846
    Abstract: One embodiment of the present invention sets forth a technique for performing spatial propagation. The technique includes generating a first directed acyclic graph (DAG) by connecting spatially adjacent points included in a set of unstructured points via directed edges along a first direction. The technique also includes applying a first set of neural network layers to one or more images associated with the set of unstructured points to generate (i) a set of features for the set of unstructured points and (ii) a set of pairwise affinities between the spatially adjacent points connected by the directed edges. The technique further includes generating a set of labels for the set of unstructured points by propagating the set of features across the first DAG based on the set of pairwise affinities.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: February 20, 2024
    Assignee: NVIDIA Corporation
    Inventors: Sifei Liu, Shalini De Mello, Varun Jampani, Jan Kautz, Xueting Li
  • Patent number: 11880927
    Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
    Type: Grant
    Filed: May 19, 2023
    Date of Patent: January 23, 2024
    Assignee: NVIDIA Corporation
    Inventors: Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Jan Kautz
  • Patent number: 11790633
    Abstract: The disclosure provides a learning framework that unifies both semantic segmentation and semantic edge detection. A learnable recurrent message passing layer is disclosed where semantic edges are considered as explicitly learned gating signals to refine segmentation and improve dense prediction quality by finding compact structures for message paths. The disclosure includes a method for coupled segmentation and edge learning. In one example, the method includes: (1) receiving an input image, (2) generating, from the input image, a semantic feature map, an affinity map, and a semantic edge map from a single backbone network of a convolutional neural network (CNN), and (3) producing a refined semantic feature map by smoothing pixels of the semantic feature map using spatial propagation, and controlling the smoothing using both affinity values from the affinity map and edge values from the semantic edge map.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: October 17, 2023
    Assignee: NVIDIA Corporation
    Inventors: Zhiding Yu, Rui Huang, Wonmin Byeon, Sifei Liu, Guilin Liu, Thomas Breuel, Anima Anandkumar, Jan Kautz
  • Publication number: 20230290038
    Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
    Type: Application
    Filed: May 19, 2023
    Publication date: September 14, 2023
    Inventors: Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Jan Kautz
  • Patent number: 11748887
    Abstract: Systems and methods to detect one or more segments of one or more objects within one or more images based, at least in part, on a neural network trained in an unsupervised manner to infer the one or more segments. Systems and methods to help train one or more neural networks to detect one or more segments of one or more objects within one or more images in an unsupervised manner.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: September 5, 2023
    Assignee: NVIDIA Corporation
    Inventors: Varun Jampani, Wei-Chih Hung, Sifei Liu, Pavlo Molchanov, Jan Kautz
  • Publication number: 20230252692
    Abstract: Embodiments of the present disclosure relate to learning dense correspondences for images. Systems and methods are disclosed that disentangle structure and texture (or style) representations of GAN synthesized images by learning a dense pixel-level correspondence map for each image during image synthesis. A canonical coordinate frame is defined and a structure latent code for each generated image is warped to align with the canonical coordinate frame. In sum, the structure associated with the latent code is mapped into a shared coordinate space (canonical coordinate space), thereby establishing correspondences in the shared coordinate space. A correspondence generation system receives the warped coordinate correspondences as an encoded image structure. The encoded image structure and a texture latent code are used to synthesize an image. The shared coordinate space enables propagation of semantic labels from reference images to synthesized images.
    Type: Application
    Filed: September 1, 2022
    Publication date: August 10, 2023
    Inventors: Sifei Liu, Jiteng Mu, Shalini De Mello, Zhiding Yu, Jan Kautz
  • Patent number: 11704857
    Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: July 18, 2023
    Assignee: NVIDIA Corporation
    Inventors: Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Jan Kautz
  • Publication number: 20230177810
    Abstract: Semantic segmentation includes the task of providing pixel-wise annotations for a provided image. To train a machine learning environment to perform semantic segmentation, image/caption pairs are retrieved from one or more databases. These image/caption pairs each include an image and associated textual caption. The image portion of each image/caption pair is passed to an image encoder of the machine learning environment that outputs potential pixel groupings (e.g., potential segments of pixels) within each image, while nouns are extracted from the caption portion and are converted to text prompts which are then passed to a text encoder that outputs a corresponding text representation. Contrastive loss operations are then performed on features extracted from these pixel groupings and text representations to determine an extracted feature for each noun of each caption that most closely matches the extracted features for the associated image.
    Type: Application
    Filed: June 29, 2022
    Publication date: June 8, 2023
    Inventors: Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz
  • Publication number: 20230074706
    Abstract: A multi-level contrastive training strategy for training a neural network relies on image pairs (no other labels) to learn semantic correspondences at the image level and region or pixel level. The neural network is trained using contrasting image pairs including different objects and corresponding image pairs including different views of the same object. Conceptually, contrastive training pulls corresponding image pairs closer and pushes contrasting image pairs apart. An image-level contrastive loss is computed from the outputs (predictions) of the neural network and used to update parameters (weights) of the neural network via backpropagation. The neural network is also trained via pixel-level contrastive learning using only image pairs. Pixel-level contrastive learning receives an image pair, where each image includes an object in a particular category.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 9, 2023
    Inventors: Taihong Xiao, Sifei Liu, Shalini De Mello, Zhiding Yu, Jan Kautz
  • Patent number: 11594006
    Abstract: There are numerous features in video that can be detected using computer-based systems, such as objects and/or motion. The detection of these features, and in particular the detection of motion, has many useful applications, such as action recognition, activity detection, object tracking, etc. The present disclosure provides a neural network that learns motion from unlabeled video frames. In particular, the neural network uses the unlabeled video frames to perform self-supervised hierarchical motion learning. The present disclosure also describes how the learned motion can be used in video action recognition.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: February 28, 2023
    Assignee: NVIDIA CORPORATION
    Inventors: Xiaodong Yang, Xitong Yang, Sifei Liu, Jan Kautz
  • Publication number: 20230015989
    Abstract: The disclosure provides a learning framework that unifies both semantic segmentation and semantic edge detection. A learnable recurrent message passing layer is disclosed where semantic edges are considered as explicitly learned gating signals to refine segmentation and improve dense prediction quality by finding compact structures for message paths. The disclosure includes a method for coupled segmentation and edge learning. In one example, the method includes: (1) receiving an input image, (2) generating, from the input image, a semantic feature map, an affinity map, and a semantic edge map from a single backbone network of a convolutional neural network (CNN), and (3) producing a refined semantic feature map by smoothing pixels of the semantic feature map using spatial propagation, and controlling the smoothing using both affinity values from the affinity map and edge values from the semantic edge map.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 19, 2023
    Inventors: Zhiding Yu, Rui Huang, Wonmin Byeon, Sifei Liu, Guilin Liu, Thomas Breuel, Anima Anandkumar, Jan Kautz
  • Publication number: 20230004760
    Abstract: Apparatuses, systems, and techniques to identify objects within an image using self-supervised machine learning. In at least one embodiment, a machine learning system is trained to recognize objects by training a first network to recognize objects within images that are generated by a second network. In at least one embodiment, the second network is a controllable network.
    Type: Application
    Filed: June 28, 2021
    Publication date: January 5, 2023
    Inventors: Siva Karthik Mustikovela, Shalini De Mello, Aayush Prakash, Umar Iqbal, Sifei Liu, Jan Kautz
  • Publication number: 20220396289
    Abstract: Apparatuses, systems, and techniques to calculate a plurality of paths, through which an autonomous device is to traverse. In at least one embodiment, a plurality of paths are calculated using one or more neural networks based, at least in part, on one or more distance values output by the one or more neural networks.
    Type: Application
    Filed: June 15, 2021
    Publication date: December 15, 2022
    Inventors: Xueting Li, Sifei Liu, Shalini De Mello, Jan Kautz
  • Publication number: 20220335672
    Abstract: One embodiment of a method includes applying a first generator model to a semantic representation of an image to generate an affine transformation, where the affine transformation represents a bounding box associated with at least one region within the image. The method further includes applying a second generator model to the affine transformation and the semantic representation to generate a shape of an object. The method further includes inserting the object into the image based on the bounding box and the shape.
    Type: Application
    Filed: January 26, 2022
    Publication date: October 20, 2022
    Inventors: Donghoon LEE, Sifei LIU, Jinwei GU, Ming-Yu LIU, Jan KAUTZ
  • Publication number: 20220270318
    Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 25, 2022
    Inventors: Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Jan Kautz
  • Publication number: 20220222832
    Abstract: A method and system are provided for tracking instances within a sequence of video frames. The method includes the steps of processing an image frame by a backbone network to generate a set of feature maps, processing the set of feature maps by one or more prediction heads, and analyzing the embedding features corresponding to a set of instances in two or more image frames of the sequence of video frames to establish a one-to-one correlation between instances in different image frames. The one or more prediction heads includes an embedding head configured to generate a set of embedding features corresponding to one or more instances of an object identified in the image frame. The method may also include training the one or more prediction heads using a set of annotated image frames and/or a plurality of sequences of unlabeled video frames.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 14, 2022
    Inventors: Yang Fu, Sifei Liu, Umar Iqbal, Shalini De Mello, Jan Kautz
  • Patent number: 11375176
    Abstract: When an image is projected from 3D, the viewpoint of objects in the image, relative to the camera, must be determined. Since the image itself will not have sufficient information to determine the viewpoint of the various objects in the image, techniques to estimate the viewpoint must be employed. To date, neural networks have been used to infer such viewpoint estimates on an object category basis, but must first be trained with numerous examples that have been manually created. The present disclosure provides a neural network that is trained to learn, from just a few example images, a unique viewpoint estimation network capable of inferring viewpoint estimations for a new object category.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: June 28, 2022
    Assignee: NVIDIA CORPORATION
    Inventors: Hung-Yu Tseng, Shalini De Mello, Jonathan Tremblay, Sifei Liu, Jan Kautz, Stanley Thomas Birchfield