Patents by Inventor Sigmar Bräuninger

Sigmar Bräuninger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220306462
    Abstract: The present invention comprises a process for producing hydrogen, wherein in a first stage hydrocarbons are decomposed into solid carbon and into a hydrogen-containing gaseous product mixture, the hydrogen-containing gaseous product mixture, which has a composition in respect of the main components CH4, N2, and H2 of 20% to 95% by volume H2 and 80% to 5% by volume CH4 and/or N2, is discharged from the first stage at a temperature of 50 to 300° C., and this is supplied at a temperature differing from this exit temperature by not more than 100° C. to an electrochemical separation process and, in this second stage, the hydrogen-containing product mixture is separated in the electrochemical separation process at a temperature of 50 to 200° C. into hydrogen having a purity of >99.99% and a remaining residual gas mixture.
    Type: Application
    Filed: October 15, 2020
    Publication date: September 29, 2022
    Inventors: Carsten HENSCHEL, Andreas FUESSL, Otto MACHHAMMER, Sigmar BRAEUNINGER
  • Patent number: 10625203
    Abstract: Disclosed herein is a membrane-electrode assembly containing: a gastight, selectively proton-conducting membrane which has a retentate side having an anode and a permeate side having a cathode; a voltage source for generating a potential difference between the anode and the cathode; an anode catalyst having a catalytically active material on the retentate side; and a cathode catalyst having a catalytically active material on the permeate side, in which the cathode catalyst has a smaller amount of catalytically active material than the anode catalyst. The present disclosure also includes a reactor containing the membrane-electrode assembly, and a process for separating off hydrogen using the membrane-electrode assembly.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: April 21, 2020
    Assignee: BASF SE
    Inventors: Eva Mutoro, Gunter Bechtloff, Sigmar Braeuninger, Bernd Bastian Schaack
  • Patent number: 10535889
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on polyazole polymers which, owing to their outstanding chemical and thermal properties, can be used widely and are suitable in particular as polymer electrolyte membrane (PEM) for producing membrane electrode assemblies or so-called PEM fuel cells.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 14, 2020
    Assignee: BASF SE
    Inventors: Brian Benicewicz, Sigmar Bräuninger, Gordon Calundann, Max Molleo, Guoqing Qian
  • Patent number: 9997791
    Abstract: The present invention relates to membrane electrode units (MEU) for high temperature fuel cells having an improved stability and a process for their manufacture.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 12, 2018
    Assignee: BASF SE
    Inventors: Sigmar Bräuninger, Detlef Ott, Jörg Belack, Moritz Ehrenstein, Seonghan Yu, Andrew Van Dyke, Emory S. De Castro
  • Publication number: 20180123155
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on polyazole polymers which, owing to their outstanding chemical and thermal properties, can be used widely and are suitable in particular as polymer electrolyte membrane (PEM) for producing membrane electrode assemblies or so-called PEM fuel cells.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Brian Benicewicz, Sigmar Bräuninger, Gordon Calundann, Max Molleo, Guoqing Qian
  • Patent number: 9812725
    Abstract: A membrane obtainable by A) mixing: (vii) aromatic tetraamino compounds and (viii) aromatic carboxylic acids or esters thereof which contain at least two acid groups per carboxylic acid monomer, or (ix) aromatic and/or heteroaromatic diaminocarboxylic acids, in polyphosphoric acid to form a solution and/or dispersion B) heating the mixture from step A), and polymerizing until an intrinsic viscosity of at least 0.8 dl/g, is obtained for the polymer being formed, C) adding polyazole polymers, D) heating the mixture from step C), E) applying a membrane layer using the mixture according to step D) on a carrier or an electrode, F) treating the membrane formed in the presence of water and/or moisture, G) removing the membrane from the carrier; wherein the content of all polyazole polymers in the membrane is between 5% to 25% by weight and wherein the membrane has a Young Modulus is at least 2.0 MPa.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: November 7, 2017
    Assignee: BASF SE
    Inventors: Brian Benicewicz, Sigmar Bräuninger, Gordon Calundann, Guoqing Qian
  • Publication number: 20170204525
    Abstract: Disclosed herein is a membrane-electrode assembly containing: a gastight, selectively proton-conducting membrane which has a retentate side having an anode and a permeate side having a cathode; a voltage source for generating a potential difference between the anode and the cathode; an anode catalyst having a catalytically active material on the retentate side; and a cathode catalyst having a catalytically active material on the permeate side, in which the cathode catalyst has a smaller amount of catalytically active material than the anode catalyst. The present disclosure also includes a reactor containing the membrane-electrode assembly, and a process for separating off hydrogen using the membrane-electrode assembly.
    Type: Application
    Filed: September 15, 2015
    Publication date: July 20, 2017
    Applicant: BASF SE
    Inventors: Eva MUTORO, Gunter BECHTLOFF, Sigmar BRAEUNINGER, Bernd SCHAACK
  • Patent number: 9168567
    Abstract: The invention relates to improved polymer membranes, to processes for production thereof and to the use thereof.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 27, 2015
    Assignee: BASF SE
    Inventors: Sigmar Bräuninger, Werner Urban
  • Patent number: 9162220
    Abstract: A process for preparing a catalyst material comprising an electrically conducting support material, a proton-conducting, polyazole-based polymer and a catalytically active material. A catalyst material prepared by the process of the invention. A catalyst ink comprising a catalyst material of the invention and a solvent. A catalyst-coated membrane (CCM) comprising a polymer electrolyte membrane and also catalytically active layers comprising a catalyst material of the present invention. A gas diffusion electrode (GDE) comprising a gas diffusion layer and a catalytically active layer comprising a catalyst material of the invention. A membrane-electrode assembly (MEA) comprising a polymer electrolyte membrane, catalytically active layers comprising a catalyst material of the invention, and gas diffusion layers. And a fuel cell comprising a membrane-electrode assembly of the present invention.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 20, 2015
    Assignee: BASF SE
    Inventors: Ömer Ünsal, Sigmar Bräuninger, Claudia Querner, Ekkehard Schwab
  • Patent number: 9054355
    Abstract: The invention relates to a catalyst for fuel cells which comprises a support, at least one catalytically active metal from the platinum group or an alloy comprising at least one metal of the platinum group and also at least one oxide of at least one metal selected from among Ti, Sn, Si, W, Mo, Zn, Ta, Nb, V, Cr and Zr. The invention further relates to a process for producing such a catalyst and its use.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: June 9, 2015
    Assignee: BASF SE
    Inventors: Claudia Querner, Stefan Kotrel, Ekkehard Schwab, Oemer Uensal, Sigmar Braeuninger
  • Patent number: 9048478
    Abstract: Proton-conducting polymer electrolyte membrane based on a polyazole salt of an inorganic or organic acid which is doped with an acid as electrolyte, wherein the polyazole salt of the organic or inorganic acid has a lower solubility in the acid used as electrolyte than the polyazole salt of the acid used as electrolyte, a process for producing the inventive proton-conducting polymer electrolyte membrane, a membrane-electrode assembly comprising at least two electrochemically active electrodes which are separated by a polymer electrolyte membrane, wherein the polymer electrolyte membrane is a proton-conducting polymer electrolyte membrane according to the invention, and a fuel cell comprising at least one membrane-electrode assembly according to the invention.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: June 2, 2015
    Assignee: BASF SE
    Inventors: Ömer Ünsal, Sigmar Bräuninger, Jörg Belack, Oliver Gronwald
  • Publication number: 20150064599
    Abstract: The present invention relates to membrane electrode units (MEU) for high temperature fuel cells having an improved stability and a process for their manufacture.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: BASF SE
    Inventors: Sigmar Bräuninger, Detlef Ott, Jörg Belack, Moritz Ehrenstein, Seonghan Yu, Andrew Van Dyke, Emory S. De Castro
  • Patent number: 8679436
    Abstract: Process for working up an exhaust gas from a system for producing hydroxylamine or hydroxylammonium salts by catalytic reduction of nitrogen monoxide with hydrogen, the exhaust gas containing nitrogen monoxide, hydrogen, dinitrogen monoxide, nitrogen and ammonia. At least some of the hydrogen present in the exhaust gas is separated off from the exhaust gas by means of a gas-tight membrane-electrode assembly which comprises at least one selectively proton-conducting membrane, a retentate side, a permeate side, and, on each side of the membrane, at least one electrode catalyst, wherein, on the retentate side of the membrane, at least some of the hydrogen is oxidized to protons at the anode catalyst and the protons, after crossing the membrane, are, on the permeate side, at the cathode catalyst according to (I) reduced to hydrogen and/or (II) reacted with oxygen to form water, the oxygen originating from an oxygen-containing stream which is contacted with the permeate side.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Arnd Garsuch, Alexander Panchenko, Sigmar Bräuninger, Jens Scheidel, Alfred Thome
  • Publication number: 20140072886
    Abstract: The present invention relates to rechargeable electrochemical zinc-oxygen cells comprising A) at least one anode comprising metallic zinc, B) at least one gas diffusion electrode comprising (B1) at least one cathode active material, and (B2) optionally at least one solid medium through which gas can diffuse, and C) an aqueous electrolyte comprising boric acid. The present invention further relates to uses of the inventive rechargeable electrochemical zinc-oxygen cells, to zinc-air batteries comprising the inventive rechargeable electrochemical zinc-oxygen cells, and to the use of an aqueous electrolyte comprising boric acid for production or for operation of rechargeable electrochemical zinc-oxygen cells.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 13, 2014
    Applicant: BASF SE
    Inventors: Tobias URBAN, Thomas Giesenberg, Eva Mutoro, Sigmar Braeuninger, Gunter Bechtloff
  • Publication number: 20140065517
    Abstract: The invention relates to gas diffusion electrodes for rechargeable electrochemical metal-oxygen cells, which comprise at least one porous support and one or more layers which are applied to one side of the porous support and comprise at least one catalyst for a metal-oxygen cell, wherein at least one function-relevant parameter changes continuously or discontinuously with increasing distance from the porous support in the catalyst-comprising layer or layers. The present invention further relates to processes for producing such gas diffusion electrodes and rechargeable electrochemical metal-oxygen cells comprising such gas diffusion electrodes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Alexander Panchenko, Sigmar Braeuninger, Arnd Garsuch, Ruediger Schmidt
  • Publication number: 20140065496
    Abstract: The invention relates to gas diffusion electrodes for rechargeable electrochemical cells, which comprise at least one support material bearing at least one catalyst, wherein the support material comprises at least one compound selected from the group consisting of electrically conductive metal oxides, carbides, nitrides, borides, silicides and organic semiconductors. The present invention further relates to a process for producing such gas diffusion electrodes and also rechargeable electrochemical cells comprising such gas diffusion electrodes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Alexander Panchenko, Sigmar Braeuninger, Claudia Querner, Arnd Garsuch
  • Publication number: 20140065518
    Abstract: The invention relates to a process for producing a rechargeable electrochemical metal-oxygen cell, comprising at least one positive electrode, at least one negative metal-comprising electrode and at least one separator having two sides for separating the positive and negative electrodes, wherein, in one of the process steps, at least one side of the separator is coated with at least one material for forming one of the two electrodes (hereinafter referred to as electrode material) or at least one side of at least one of the two electrodes is coated with at least one material for forming the separator (hereinafter referred to as separator material) to form a separator-electrode assembly.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Alexander PANCHENKO, Sigmar Braeuninger, Arnd Garsuch, Ruediger Schmidt
  • Patent number: 8569196
    Abstract: The invention relates to a process for the continuous production of a catalyst comprising an alloy of a metal of the platinum group and at least a second metal as alloying metal selected from among the metals of the platinum group and the transition metals, in which a catalyst comprising the metal of the platinum group is mixed with at least one complex each comprising the alloying metal to give an alloy precursor and the alloy precursor is heated in a continuously operated furnace to produce the alloy.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: October 29, 2013
    Assignee: BASF SE
    Inventors: Ekkehard Schwab, Stefan Kotrel, Alexander Panchenko, Sigmar Braeuninger, Sandra Magnus, Claudia Querner
  • Publication number: 20130183222
    Abstract: A process for working up an exhaust gas A from a system for producing hydroxylamine or hydroxylammonium salts by catalytic reduction of nitrogen monoxide with hydrogen, wherein the exhaust gas A comprises nitrogen monoxide, hydrogen, dinitrogen monoxide, nitrogen and ammonia, and at least some of the hydrogen present in the exhaust gas A is separated off from the exhaust gas A by means of a gas-tight membrane-electrode assembly which comprises at least one selectively proton-conducting membrane, a retentate side, a permeate side, and, on each side of the membrane, at least one electrode catalyst, wherein, on the retentate side of the membrane, at least some of the hydrogen is oxidized to protons at the anode catalyst and the protons, after crossing the membrane, are, on the permeate side, at the cathode catalyst according to I reduced to hydrogen and/or II reacted with oxygen to form water, wherein the oxygen originates from an oxygen-comprising stream O which is contacted with the permeate side.
    Type: Application
    Filed: September 27, 2011
    Publication date: July 18, 2013
    Applicant: BASF SE
    Inventors: Arnd Garsuch, Alexander Panchenko, Sigmar Bräuninger, Jens Scheidel, Alfred Thome
  • Publication number: 20120178018
    Abstract: The invention relates to a catalyst for fuel cells which comprises a support, at least one catalytically active metal from the platinum group or an alloy comprising at least one metal of the platinum group and also at least one oxide of at least one metal selected from among Ti, Sn, Si, W, Mo, Zn, Ta, Nb, V, Cr and Zr. The invention further relates to a process for producing such a catalyst and its use.
    Type: Application
    Filed: September 22, 2010
    Publication date: July 12, 2012
    Applicant: BASF SE
    Inventors: Claudia Querner, Stefan Kotrel, Ekkehard Schwab, Oemer Uensal, Sigmar Braeuninger