Patents by Inventor Siham Atifi

Siham Atifi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210316274
    Abstract: The present disclosure generally relates to a scalable, green process for producing non-toxic, all-cellulose super absorbent hydrogels that form instantly after cross-linking. A super absorbent hydrogel can be produced by physical mixing of water-soluble carboxyalkyl polysaccharides such carboxymethyl cellulose and negatively-charged cellulose nanocrystals resulting in instantaneous gelation. Cellulose nanocrystals act as effective cross-linkers when physically mixed with carboxymethyl cellulose in an aqueous medium. The resulting hydrogel possesses excellent absorption properties, and has applications in a wide range of products from hygiene products to medical and industrial super absorbent products.
    Type: Application
    Filed: September 6, 2019
    Publication date: October 14, 2021
    Inventors: Wadood Y. HAMAD, Siham ATIFI
  • Patent number: 10081880
    Abstract: The present describes a chiral nematic cellulose nanocrystal (CNC) film comprising: cellulose nanocrystals that self-assemble to form an iridescent CNC structure, wherein the self-assembled structure comprises a finger-print pattern of repeating bright and dark regions, defining a pitch of the iridescent film, where the pitch variable. Also described are conductive polymer nanocomposite based on the CNC film. Further described is the electrophoretic method of producing the chiral nematic cellulose nanocrystal film as well as the polymer nanocomposites and the apparatus used.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: September 25, 2018
    Assignee: FPInnovations
    Inventors: Wadood Y. Hamad, Siham Atifi, Neville J. Stead
  • Patent number: 9384867
    Abstract: A new approach is conceived for the development of organic polymeric conducting materials synthesized from nanocomposites of nanocrystalline cellulose (NCC) and polyaniline (PANI). The process involves oxidative-radical polymerization of aniline in the presence of NCC using either in situ or emulsion polymerization. The resulting NCC-PANI nanocomposite material can be obtained in film or powder form and exhibits electrical conductive properties typical of semiconducting materials. Unlike PANI, a brittle conductive polymer, NCC-PANI nanocomposite materials can be engineered to possess significant flexibility, strength and/or hardness as a result of the NCC acting as a reinforcing scaffold. Depending on the preparation conditions, electrical conductivities for the NCC-PANI nanocomposite materials prepared according to this disclosure range from 9.98×10?5 to 1.88×10?2 S·cm?1; they could also have hardness ?0.189 GPa or be formed into flexible films of tensile strength of the order of 9.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 5, 2016
    Assignee: FPINNOVATIONS
    Inventors: Wadood Yasser Hamad, Siham Atifi
  • Publication number: 20160108537
    Abstract: The present describes a chiral nematic cellulose nanocrystal (CNC) film comprising: cellulose nanocrystals that self-assemble to form an iridescent CNC structure, wherein the self-assembled structure comprises a finger-print pattern of repeating bright and dark regions, defining a pitch of the iridescent film, where the pitch variable. Also described are conductive polymer nanocomposite based on the CNC film. Further described is the electrophoretic method of producing the chiral nematic cellulose nanocrystal film as well as the polymer nanocomposites and the apparatus used.
    Type: Application
    Filed: May 6, 2014
    Publication date: April 21, 2016
    Applicant: FPINNOVATIONS
    Inventors: Wadood Y. HAMAD, Siham ATIFI, Neville J. STEAD
  • Publication number: 20160024264
    Abstract: This invention describes development of a novel flexible film comprising nanocrystalline cellulose (NCC), or cellulose nanocrystals (CNC), and a controlled amount of a suitable zwitterionic (amphoteric) surfactant. The films are iridescent and have a high level of structural integrity, where mechanical properties can be engineered to suit the end applications. Flexible NCC films can be used in a multitude of applications, for instance, electrostatic shielding, gas barrier, hard coatings, printing.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 28, 2016
    Inventors: Wadood Yasser Hamad, Siham ATIFI, Richard Michael BERRY
  • Publication number: 20140203214
    Abstract: A new approach is conceived for the development of organic polymeric conducting materials synthesized from nanocomposites of nanocrystalline cellulose (NCC) and polyaniline (PANI). The process involves oxidative-radical polymerization of aniline in the presence of NCC using either in situ or emulsion polymerization. The resulting NCC-PANI nanocomposite material can be obtained in film or powder form and exhibits electrical conductive properties typical of semiconducting materials. Unlike PANI, a brittle conductive polymer, NCC-PANI nanocomposite materials can be engineered to possess significant flexibility, strength and/or hardness as a result of the NCC acting as a reinforcing scaffold. Depending on the preparation conditions, electrical conductivities for the NCC-PANI nanocomposite materials prepared according to this disclosure range from 9.98×10?5 to 1.88×10?2 S·cm?1; they could also have hardness ?0.189 GPa or be formed into flexible films of tensile strength of the order of 9.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 24, 2014
    Applicant: FPINNOVATIONS
    Inventors: Wadood Yasser Hamad, Siham Atifi