Patents by Inventor SIHUA YUAN

SIHUA YUAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11067455
    Abstract: A temperature-sensing apparatus for sensing the temperature of an electrical conductor (31), comprising a sensor frame (210) including a frame body (2101) and a channel (2102) adapted to accommodate the electrical conductor (31). At least a portion of a temperature sensor is received in a chamber (2103) of the sensor frame (210). At least a portion of a thermal contact member is disposed between the electrical conductor (31) and the temperature sensor and configured to enhance thermal-contact therebetween. At least a portion of the thermal contact member is radially pressable against the electrical conductor (31).
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 20, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Sihua Yuan, Justin M. Johnson, Ryan D. Erickson, Christopher D. Sebesta, Zheng Huang, Jia Hu, Tongyong Li, Gaofei Guo, Tao Yang, Qihong Nie
  • Patent number: 10378965
    Abstract: A system (100) for monitoring a temperature of an electrical conductor of an electrical cable and including a temperature sensor unit (100a) and a transceiver unit (100b). The temperature sensor unit (100a) is located inside the first (semi)conductive layer and includes a micro-controller (120), a temperature sensor (110), an energy harvest sub-unit (140) and a wireless transmitter layer (130). The temperature sensor (110) is adapted to detect a first signal (S1) representing temperature of the electrical conductor and to supply the first signal (S1) to the micro-controller (120). The transceiver unit (100b) is located outside the first (semi)conductive layer and includes an energy transmitter (160) and a wireless receiver (150). The energy harvest sub-unit (140) is adapted to harvest electromagnetic power from the energy transmitter (160) and to provide electrical power to the micro-controller (120).
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: August 13, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Zhiguo Wen, Zheng Huang, Sihua Yuan, Xuetao Yu, Ming Zhang
  • Publication number: 20190003901
    Abstract: A temperature-sensing apparatus for sensing the temperature of an electrical conductor (31), comprising a sensor frame (210) including a frame body (2101) and a channel (2102) adapted to accommodate the electrical conductor (31). At least a portion of a temperature sensor is received in a chamber (2103) of the sensor frame (210). At least a portion of a thermal contact member is disposed between the electrical conductor (31) and the temperature sensor and configured to enhance thermal-contact therebetween. At least a portion of the thermal contact member is radially pressable against the electrical conductor (31).
    Type: Application
    Filed: December 21, 2015
    Publication date: January 3, 2019
    Inventors: Sihua Yuan, Justin M. Johnson, Ryan D. Erickson, Christopher D. Sebesta, Zheng Huang, Jia Hu, Tongyong Li, Gaofei Guo, Tao Yang, Qihong Nie
  • Patent number: 9885618
    Abstract: A system for monitoring temperature of an electrical conductor (31) enclosed in at least a (semi)conductive layer (13) comprising: a passive inductive unit (20), and a transceiver unit (40) and a control unit (50). The passive inductive unit (20) includes at least one temperature sensitive component and is configured to have a resonance frequency and/or Q value that vary with temperature of the electrical conductor (31). The transceiver unit (40) is configured to be electromagnetically coupled to the passive inductive unit (20) and to send out a signal representing the resonance frequency and/or Q value of the passive inductive unit (20). The transceiver unit (40) is further configured to communicate with the control unit (50) which ascertains the signal representing one or both of the resonance frequency and Q value, and which determines a value of the temperature of the electrical conductor (31) based on the ascertained signal representing one or both of the resonance frequency and Q value.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: February 6, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Zhiguo Wen, Zheng Huang, Sihua Yuan, Justin M. Johnson, Ronald D. Jesme, Andrew P. Bonifas, Terrence H. Joyce, Jacob D. Chatterton, Yingyu Wang, Xuetao Yu
  • Publication number: 20170363483
    Abstract: Systems and methods for directly sensing, measuring, or monitoring the temperature of an electrical conductor (31) of a power cable (10), are provided. A surface acoustic wave (SAW) temperature sensor (20) is used that includes a substrate (20S) with a transducer (20T) disposed thereon. The transducer (20T) conducts conversion between an electromagnetic signal and a SAW signal that propagates on the substrate (20S). At least a portion of the substrate (20S) is disposed in thermal contact with the electrical conductor (31) such that the SAW signal varies with the temperature of the electrical conductor (31).
    Type: Application
    Filed: December 30, 2014
    Publication date: December 21, 2017
    Inventors: Sihua Yuan, Zhiguo Wen, Zheng Huang, Xuetao Yu, Gaofei Guo, Ming Zhang, Justin M. Johnson, Ronald D. Jesme, Jaewon Kim
  • Publication number: 20160223406
    Abstract: A system (100) for monitoring a temperature of an electrical conductor of an electrical cable and including a temperature sensor unit (100a) and a transceiver unit (100b). The temperature sensor unit (100a) is located inside the first (semi)conductive layer and includes a micro-controller (120), a temperature sensor (110), an energy harvest sub-unit (140) and a wireless transmitter layer (130). The temperature sensor (110) is adapted to detect a first signal (S1) representing temperature of the electrical conductor and to supply the first signal (S1) to the micro-controller (120). The transceiver unit (100b) is located outside the first (semi)conductive layer and includes an energy transmitter (160) and a wireless receiver (150). The energy harvest sub-unit (140) is adapted to harvest electromagnetic power from the energy transmitter (160) and to provide electrical power to the micro-controller (120).
    Type: Application
    Filed: September 11, 2013
    Publication date: August 4, 2016
    Inventors: Zhiguo Wen, Zheng Huang, Sihua Yuan, Xuetao Yu, Ming Zhang
  • Publication number: 20160076945
    Abstract: A system for monitoring temperature of an electrical conductor (31) enclosed in at least a (semi)conductive layer (13) comprising: a passive inductive unit (20), and a transceiver unit (40) and a control unit (50). The passive inductive unit (20) includes at least one temperature sensitive component and is configured to have a resonance frequency and/or Q value that vary with temperature of the electrical conductor (31). The transceiver unit (40) is configured to be electromagnetically coupled to the passive inductive unit (20) and to send out a signal representing the resonance frequency and/or Q value of the passive inductive unit (20). The transceiver unit (40) is further configured to communicate with the control unit (50) which ascertains the signal representing one or both of the resonance frequency and Q value, and which determines a value of the temperature of the electrical conductor (31) based on the ascertained signal representing one or both of the resonance frequency and Q value.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 17, 2016
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: ZHIGUO WEN, ZHENG HUANG, SIHUA YUAN, JUSTIN M. JOHNSON, RONALD D. JESME, ANDREW P. BONIFAS, TERRENCE H. JOYCE, JACOB D. CHATTERTON, YINGYU WANG, ZUETAO YU