Patents by Inventor Sil Gu Mun

Sil Gu Mun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180062762
    Abstract: An optical signal receiving apparatus included in an optical line terminal (OLT) includes a resistor disposed between a capacitor connected to a receiving optical sub-assembly (ROSA) and a limiting amplifier, wherein a resistance value of the resistor may be determined based on the OLT receives an optical signal from an optical network unit (ONU) and whether the ONU transmitting the optical signal to the OLT is switched, the resistance value of the resistor may be determined to reduce a data loss occurring from the optical signal receiving apparatus in response to the OLT receiving the optical signal from the ONU, and the resistance value of the resistor may be determined such that the optical signal receiving apparatus more rapidly follows a change in intensity of the optical signal in response to the ONU transmitting the optical signal to the OLT being switched.
    Type: Application
    Filed: August 24, 2017
    Publication date: March 1, 2018
    Inventors: Sil Gu MUN, Hwan Seok CHUNG
  • Patent number: 9720192
    Abstract: An interface for transmitting a high-speed signal and an optical module including the same. The interface may include a main substrate and a sub-substrate. The main substrate may have at least one high-speed signal line formed on the upper surface of the main substrate. The sub-substrate may have a first conductive line formed on the lower surface thereof so as to adjust high-speed signal transmission characteristics of the high-speed signal line, wherein the first conductive line may be coupled to the upper surface of the main substrate and partially overlap with the high-speed signal line.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: August 1, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jyung Chan Lee, Eun Gu Lee, Sil Gu Mun, Sang Soo Lee
  • Patent number: 9532441
    Abstract: A board assembly for transmitting a high-speed signal and a method of manufacturing the same. The board assembly may include a submount board, a base board, and a contact member for a signal line. The submount board may include at least one first high-speed signal line formed on the surface thereof. The base board may include the submount board on one part of the upper surface thereof, and at least second high-speed signal line on the other part of the upper surface thereof, wherein the second high-speed signal lines corresponds to the first high-speed signal lines, respectively. The contact member for the signal line may be installed on the side of the submount board, and have an upper portion contacting the first high-speed signal line and a lower portion contacting the second high-speed signal line such that the first high-speed signal line contacts the second high-speed signal line.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: December 27, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jyung Chan Lee, Eun Gu Lee, Sil Gu Mun, Sang Soo Lee
  • Publication number: 20160365931
    Abstract: In an RN configuration for providing a new service in a PON, it is possible to configure the RN remotely by instantaneous powering from a remote site only when necessary, while the RN being operated as a PON at ordinary times. More specifically, an RN configuration for providing a new service in a PON according to the present invention includes a power generation block capable of providing energy necessary for activating the RN by instantaneously supplied power from the remote site. Further, an RN according to the present invention further includes either one or both of a control agent block capable of controlling and managing optical paths of the RN by using power generated from the power generation block; and a reconfigurable switching block capable of configuring and switching the optical path of the RN through the power being provided from the power generation block and a control by the control agent block.
    Type: Application
    Filed: December 19, 2013
    Publication date: December 15, 2016
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chang-Hee LEE, Jong-Hoon LEE, Ki-Man CHOI, Sil-Gu MUN, Jung-Hyung MOON, Hoon-Keun LEE
  • Publication number: 20160226618
    Abstract: A controlling method for mitigating a rogue behavior of an Optical Network Unit (ONU) having a wavelength-tunable function in a hybrid Passive Optical Network (PON) system. The controlling method includes determining whether a first wavelength for an upstream signal received from the ONU strays away from an allowable range for a second wavelength assigned to the ONU, and, in response to a determination that the first wavelength strays away from the allowable range for the second wavelength, transmitting an upstream wavelength adjustment request message to the ONU to adjust a wavelength for the upstream signal. At this point, a determination on whether the first wavelength strays away from the allowable range for the second wavelength is made by calculating wavelength drift of the first wavelength and determining whether the calculated wavelength drift is greater than a drift threshold.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 4, 2016
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jie-Hyun LEE, Kyeong-Hwan DOO, Sil-Gu MUN, Han-Hyub LEE
  • Patent number: 9231371
    Abstract: A wavelength-tunable optical transmission apparatus including an optical array unit comprising a plurality of light sources whose wavelengths are changed, an optical driving unit configured to receive an electrical signal transmitted from an external circuit, generate the current and input the generated current to the optical array unit, and a control unit configured to control the magnitude of current input to the optical array unit by controlling the optical driving unit.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: January 5, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jyung-Chan Lee, Eun-Gu Lee, Sil-Gu Mun, Eui-Suk Jung, Sang-Soo Lee
  • Publication number: 20150372758
    Abstract: A transmitting and receiving apparatus using a wavelength-tunable filter according to an exemplary embodiment may include: a filter to generate a filtered optical-reception signal by passing only an allowed-to-be-passed wavelength by using Bragg grating filter; a wavelength setter to set the allowed-to-be-passed wavelength of the filter; and a photoelectric converter to perform photoelectric conversion on the filtered optical-reception signal into an electrical signal.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 24, 2015
    Inventors: Sil Gu MUN, Eun Gu LEE, Jyung Chan LEE, Sang Soo LEE
  • Publication number: 20150286018
    Abstract: A cost-effective optical coupling module for achieving an optical coupling by providing a predetermined space between an optical element and an optical waveguide without an additional lens is provided. The cost-effective optical coupling module includes an optical element configured to output or receive an optical signal, a substrate configured to allow the optical element to be fixed to an upper surface of one side thereof, an optical waveguide disposed above the optical element and coupled to the optical element, and spacers protruding at both sides of the substrate to maintain an interval between the optical waveguide and the optical element.
    Type: Application
    Filed: February 23, 2015
    Publication date: October 8, 2015
    Inventors: EUN GU LEE, JYUNG CHAN LEE, SIL GU MUN, SANG SOO LEE
  • Patent number: 9112639
    Abstract: There is provided an optical transceiver apparatus including an optical transmitter configured to transmit light of variable wavelength, an optical receiver configured to receive light generated from an opposite light source, and a controller configured to perform initialization to a wavelength corresponding to when an intensity of light received by the optical receiver is greater than or equal to a reference power, while varying the wavelength of light output by the optical transmitter.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: August 18, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jyung-Chan Lee, Eun-Gu Lee, Sil-Gu Mun, Eui-Suk Jung, Sang-Soo Lee
  • Publication number: 20150229402
    Abstract: An interface for transmitting a high-speed signal and an optical module including the same. The interface may include a main substrate and a sub-substrate. The main substrate may have at least one high-speed signal line formed on the upper surface of the main substrate. The sub-substrate may have a first conductive line formed on the lower surface thereof so as to adjust high-speed signal transmission characteristics of the high-speed signal line, wherein the first conductive line may be coupled to the upper surface of the main substrate and partially overlap with the high-speed signal line.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 13, 2015
    Inventors: Jyung Chan LEE, Eun Gu LEE, Sil Gu MUN, Sang Soo LEE
  • Publication number: 20150230330
    Abstract: A board assembly for transmitting a high-speed signal and a method of manufacturing the same. The board assembly may include a submount board, a base board, and a contact member for a signal line. The submount board may include at least one first high-speed signal line formed on the surface thereof. The base board may include the submount board on one part of the upper surface thereof, and at least second high-speed signal line on the other part of the upper surface thereof, wherein the second high-speed signal lines corresponds to the first high-speed signal lines, respectively. The contact member for the signal line may be installed on the side of the submount board, and have an upper portion contacting the first high-speed signal line and a lower portion contacting the second high-speed signal line such that the first high-speed signal line contacts the second high-speed signal line.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 13, 2015
    Inventors: Jyung Chan LEE, Eun Gu LEE, Sil Gu MUN, Sang Soo LEE
  • Patent number: 9106335
    Abstract: Provided are an automatic wavelength recognition apparatus and method. The automatic wavelength recognition apparatus includes: a division unit receiving a single optical signal and dividing the received optical signal into a plurality of optical signals; a plurality of filter units filtering the optical signals and having different and wavelength-dependent pass characteristics; a plurality of detection units detecting the filtered optical signals and measuring intensities of the detected optical signals; at least one comparison unit comparing outputs of any two of the detection units; and a wavelength determination unit receiving an output of the at least one comparison unit and determining a wavelength of the above single optical signal using a pre-stored look-up table.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 11, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sil-Gu Mun, Eun-Gu Lee, Dong-Min Seol, Eui-Suk Jung, Sang-Soo Lee, Jeong-Sik Cho
  • Patent number: 9100121
    Abstract: A link setup method for a wavelength-division-multiplexing passive optical network (WDM PON) system. The system includes a service providing device, a local node, and a plurality of subscriber devices. The link setup method includes assigning an initial wavelength for communication between the service providing device and a new subscriber device to be installed in the local node. The assigning of the initial wavelength may be performed as a part of process for activating the subscriber device, and this procedure may be performed between a physical layer of the service providing device and a physical layer of the new subscriber device.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 4, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Eun-Gu Lee, Eui-Suk Jung, Sil-Gu Mun, Jie-Hyun Lee, Han-Hyub Lee
  • Patent number: 9093811
    Abstract: A multi-channel transmitter optical sub-assembly (TOSA) is provided. The multi-channel TOSA includes a stem including a sub-mount, a plurality of light sources mounted on the sub-mount, a common ground pad disposed at the sub-mount and connected to ground electrodes of the light sources in common, a common lead pin installed at the stem, and connected to the common ground pad, and a thermistor mounted on the sub-mount along with the light sources.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: July 28, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Eun-Gu Lee, Eui-Suk Jung, Sil-Gu Mun, Han-Hyub Lee, Jyung-Chan Lee, Sang-Soo Lee, Jong-Hyun Lee
  • Patent number: 8837946
    Abstract: A data transmission apparatus for use in a separate-type base station is provided. The data transmission apparatus includes: a digital unit configured to generate first data that includes transmission method information indicating a selected transmission method and data to be transmitted; a time-division synchronization control unit configured to, in response to the selected transmission method being time-division multiplexing (TDM), generate second data by including synchronization information for transmitting the first data using TDM in the first data; and a wavelength conversion unit configured to convert at least one of the first data and the second data into one or more wavelength optical signals using a predefined wavelength or a predefined group of wavelengths and transmit the wavelength optical signals to one or more radio stations.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sil-Gu Mun, Eui-Suk Jung, Sang-Soo Lee
  • Patent number: 8818200
    Abstract: The present invention discloses a multiple star wavelength division multiplexing passive optical network system using a wavelength assignment method. In a multiple star wavelength division multiplexing passive optical network system using a wavelength assignment method according to the present invention, only one WDM-PON system can provide services for a plurality of subscribers who is distributed in a wide range of area through multiple starring, by setting one or more band for transmitting up-stream signals as an up-stream basic band and one or more band for transmitting down-stream signals as a down stream basic band, respectively, and by dividing each of the up-stream basic band and the down stream basic band into a plurality of wavelength sub-bands and assigning the divided sub-bands to different areas using a wavelength division multiplexer/de-multiplexer which splits a band into two or more sub-bands.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 26, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Sang-Mook Lee, Sil-Gu Mun
  • Publication number: 20140186042
    Abstract: Provided are an optical receiver having a wavelength recognition function, and a device and method for recognizing wavelengths using the same. The optical receiver according to an embodiment of the invention includes a splitter configured to split light intensity of input optical signals, a first receiver configured to photoelectrically convert the optical signals split using the splitter, a filter having different pass band characteristics based on wavelengths of the optical signals split using the splitter, a second receiver configured to photoelectrically convert the optical signals passing through the filter, and a comparator configured to compare the optical signals respectively, photoelectrically converted by the first and second receivers and recognize wavelengths of the input optical signals.
    Type: Application
    Filed: August 12, 2013
    Publication date: July 3, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sil-Gu MUN, Eun-Gu LEE, Eui-Suk JUNG, Sang-Soo LEE
  • Publication number: 20140153933
    Abstract: A multi-channel transmitter optical sub-assembly (TOSA) is provided. The multi-channel TOSA includes a stem including a sub-mount, a plurality of light sources mounted on the sub-mount, a common ground pad disposed at the sub-mount and connected to ground electrodes of the light sources in common, a common lead pin installed at the stem, and connected to the common ground pad, and a thermistor mounted on the sub-mount along with the light sources.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 5, 2014
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Eun-Gu LEE, Eui-Suk JUNG, Sil-Gu MUN, Han-Hyub LEE, Jyung-Chan LEE, Sang-Soo LEE, Jong-Hyun LEE
  • Publication number: 20140147118
    Abstract: There is provided an optical transceiver apparatus including an optical transmitter configured to transmit light of variable wavelength, an optical receiver configured to receive light generated from an opposite light source, and a controller configured to perform initialization to a wavelength corresponding to when an intensity of light received by the optical receiver is greater than or equal to a reference power, while varying the wavelength of light output by the optical transmitter.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 29, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jyung-Chan LEE, Eun-Gu LEE, Sil-Gu MUN, Eui-Suk JUNG, Sang-Soo LEE
  • Publication number: 20140133502
    Abstract: A wavelength-tunable optical transmission apparatus including an optical array unit comprising a plurality of light sources whose wavelengths are changed, an optical driving unit configured to receive an electrical signal transmitted from an external circuit, generate the current and input the generated current to the optical array unit, and a control unit configured to control the magnitude of current input to the optical array unit by controlling the optical driving unit.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jyung-Chan LEE, Eun-Gu LEE, Sil-Gu MUN, Eui-Suk JUNG, Sang-Soo LEE