Patents by Inventor Silke Scharner

Silke Scharner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170215249
    Abstract: In various embodiments, an optoelectronic assembly may include at least one organic light emitting diode including a first light emitting diode element and a second light emitting diode element, and an electronic circuit. The first light emitting diode element and the second light emitting diode element are electrically connected in parallel and are deposited monolithically on a common substrate, and the electronic circuit is designed to compare an electric current through the first light emitting diode element that flows during operation with an electric current through the second light emitting diode element that flows during operation and, depending on the comparison, to detect a short circuit of the first light emitting diode element or of the second light emitting diode element and to initiate an electrical switching off of one of the light emitting diode elements and/or of the assembly.
    Type: Application
    Filed: July 2, 2015
    Publication date: July 27, 2017
    Inventors: Arne Fleissner, Daniel Riedel, Nina Riegel, Silke Scharner, Johannes Rosenberger, Thomas Wehlus
  • Publication number: 20170214002
    Abstract: An optoelectronic assembly includes an optoelectronic component having a surface light source for emitting a light on a substrate which is at least partly transmissive for the light emitted by the surface light source, wherein the optoelectronic component includes at least one first main emission surface and a second main emission surface wherein the second main emission surface is situated opposite the first main emission surface, and a reflective structure which is arranged at least partly in the beam path of the light emitted by the surface light source and is designed to reflect at least part of the light impinging on the reflective structure in the direction of the substrate, such that a laterally offset image of the surface light source is generatable. The reflective structure and the optoelectronic component are arranged at a distance from one another in a range of approximately 1 mm to approximately 1000 mm.
    Type: Application
    Filed: July 3, 2015
    Publication date: July 27, 2017
    Inventors: Daniel Riedel, Thomas Wehlus, Nina Riegel, Silke Scharner, Johannes Rosenberger, Arne Fleissner
  • Patent number: 9685638
    Abstract: Various embodiments may relate to a method for producing an optoelectronic component, including forming a first electrode on a substrate, arranging a first mask structure on or above the substrate, wherein the first mask structure comprises a first structuring region including an opening and/or a region prepared for forming an opening, arranging a second mask structure on or above the first mask structure, forming a second structuring region in the first mask structure and in the second mask structure in such a way that at least one part of the first structuring region in the first mask structure is formed outside the second structuring region in the first mask structure.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: June 20, 2017
    Assignee: ORAM OLED GmbH
    Inventors: Arne Fleissner, Carola Diez, Nina Riegel, Thomas Wehlus, Daniel Riedel, Johannes Rosenberger, Silke Scharner
  • Publication number: 20170125722
    Abstract: A lighting device may include a substrate having a carrier, a first electrical busbar, a second electrical busbar, and an optically functional structure on or above the carrier, wherein the optically functional structure is formed laterally between the first and the second electrical busbar, and a first electrode electrically coupled to the first electrical busbar and/or the second electrical busbar, on or above the carrier, and an organic functional layer structure on or above the first electrode, wherein the organic functional layer structure is formed for converting an electric current into an electromagnetic radiation, and a second electrode on or above the organic functional layer structure. The optically functional structure is formed in such a way that the beam path of the electromagnetic radiation which passes through the substrate and/or the spectrum of the electromagnetic radiation passing through the substrate are/is variable by means of the optically functional structure.
    Type: Application
    Filed: April 20, 2015
    Publication date: May 4, 2017
    Applicant: OSRAM OLED GMBH
    Inventors: Thomas Wehlus, Daniel Riedel, Nina Riegel, Silke Scharner, Johannes Rosenberger, Arne Fleissner
  • Publication number: 20160359130
    Abstract: In various embodiments, an organic optoelectronic component is provided. The organic optoelectronic component may include a first electrode, an organic functional layer structure over the first electrode, and a second electrode over the organic functional layer structure. Optionally, the organic functional layer structure includes a charge carrier pair generation layer structure. At least one of the electrodes and/or the charge carrier pair generation layer structure includes electrically conductive nanostructures, the surfaces of which are at least partially coated with a coating material.
    Type: Application
    Filed: February 18, 2015
    Publication date: December 8, 2016
    Inventors: Thomas Wehlus, Erwin Lang, Richard Baisl, Daniel Riedel, Arndt Jaeger, Andreas Rausch, Silke Scharner
  • Publication number: 20160359127
    Abstract: The invention relates to a method for producing an organic light-emitting diode (1) comprising the following steps: providing a carrier (3) for the organic light-emitting diode (1), applying a solution (S) comprising a plurality of different emitter materials (E) to the carrier (1), wherein said emitter materials (E) are each formed by a certain type of organic molecule and have electrical charges that differ from each other, applying an electrical field (F), so that the solution is located in the electrical field (F), and drying the solution (S) into a plurality of emitter layers (20) in an organic layer stack (2), while the electrical field is applied, so that the emitter materials (E) are accommodated separately from each other, each in a certain emitter layer (20) of the organic stack (2).
    Type: Application
    Filed: February 10, 2015
    Publication date: December 8, 2016
    Inventors: Silke SCHARNER, Carola DIEZ, Dominik PENTLEHNER, Ulrich NIEDERMEIER
  • Publication number: 20160233455
    Abstract: Various embodiments may relate to a component. The component includes an optically active region designed for electrically controllably transmitting, reflecting, absorbing, emitting and/or converting an electromagnetic radiation, and an optically inactive region formed alongside the optically active region, wherein the optically inactive region and/or the optically active region have/has an adaptation structure designed to adapt the value of an optical variable in the optically inactive region to a value of the optical variable in the optically active region.
    Type: Application
    Filed: September 18, 2014
    Publication date: August 11, 2016
    Inventors: Daniel Riedel, Johannes Rosenberger, Thomas Wehlus, Nina Riegel, Silke Scharner, Arne Fleissner
  • Publication number: 20160218326
    Abstract: Various embodiments may relate to a method for producing an optoelectronic component, including forming a first electrode on a substrate, arranging a first mask structure on or above the substrate, wherein the first mask structure comprises a first structuring region including an opening and/or a region prepared for forming an opening, arranging a second mask structure on or above the first mask structure, forming a second structuring region in the first mask structure and in the second mask structure in such a way that at least one part of the first structuring region in the first mask structure is formed outside the second structuring region in the first mask structure.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 28, 2016
    Applicant: ORAM OLED GmbH
    Inventors: Arne Fleissner, Carola Diez, Nina Riegel, Thomas Wehlus, Daniel Riedel, Johannes Rosenberger, Silke Scharner
  • Publication number: 20160155981
    Abstract: Various embodiments may relate to a method for forming a conductor path structure on an electrode surface of an electronic component. The method includes introducing electrically conductive metal particles into an insulating carrier material, producing a mixed composition by mixing the carrier material with the metal particles, applying the mixed composition to the electrode surface, separating the metal particles from the carrier material, allowing the metal particles to become attached to the electrode surface, fixing the metal particles attached to the electrode surface, and curing the carrier material.
    Type: Application
    Filed: June 13, 2014
    Publication date: June 2, 2016
    Inventors: Silke Scharner, Stefan Dechand
  • Publication number: 20160149153
    Abstract: Various embodiments may relate to an optoelectronic component, including an organic functional layer structure, and an electrode on or above the organic functional layer structure. The electrode is electrically conductively coupled to the organic functional layer structure. The electrode includes an optically transparent or translucent matrix including at least one matrix material, and particles embedded into the matrix. The particles have a refractive index that is greater than the refractive index of the at least one matrix material. A difference in refractive index between the at least one matrix material and the particles embedded into the matrix is at least 0.05.
    Type: Application
    Filed: June 12, 2014
    Publication date: May 26, 2016
    Inventors: Silke Scharner, Thomas Wehlus
  • Publication number: 20160126486
    Abstract: Various embodiments may relate to a process for producing an optoelectronic component. In the process, a carrier is provided. A first electrode is formed upon the carrier. An optically functional layer structure is formed upon the first electrode. A second electrode is formed upon the optically functional layer structure. At least one of the two electrodes is formed by disposing electrically conductive nanowires on a surface on which the corresponding electrode is to be formed, and by heating the nanowires in such a way that they plastically deform.
    Type: Application
    Filed: May 20, 2014
    Publication date: May 5, 2016
    Inventors: Silke Scharner, Thomas Wehlus
  • Publication number: 20140048785
    Abstract: An optoelectronic component includes: a wet-chemically processed hole injection layer; and an additional layer doped with a dopant and adjacent to the wet-chemically processed hole injection layer, the dopant comprising a copper complex having at least one ligand with the chemical structure according to formula I in which E1 and E2 are each independently one of the following elements: sulfur, oxygen or selenium, and R is selected from the group of: hydrogen or substituted or unsubstituted, branched, linear or cyclic hydrocarbons.
    Type: Application
    Filed: March 1, 2012
    Publication date: February 20, 2014
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Karsten Heuser, Silke Scharner, Stefan Seidel