Patents by Inventor Silvia Neumann

Silvia Neumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11059032
    Abstract: A novel coated catalyst having an outer shell which is composed of a catalyst material having high surface area and contains molybdenum, vanadium, tellurium and niobium, and the use of this catalyst for the oxidative dehydrogenation of ethane to ethene or the oxidation of propane to acrylic acid and also a process for producing the catalyst is disclosed.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: July 13, 2021
    Assignee: CLARIANT INTERNATIONAL LTD
    Inventors: Gerhard Mestl, Klaus Wanninger, Silvia Neumann, Peter Schinke
  • Patent number: 11007509
    Abstract: A simple, scalable, inexpensive, and reproducible method of selectively preparing the M1 phase of a MoVNbTe mixed oxide in a hydrothermal synthesis using tellurium dioxide is disclosed which can utilize inexpensive metal oxides as starting compounds.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: May 18, 2021
    Assignee: CLARIANT PRODUCKTE GMBH
    Inventors: Gerhard Mestl, Klaus Wanninger, Silvia Neumann
  • Publication number: 20200215516
    Abstract: A novel coated catalyst having an outer shell which is composed of a catalyst material having high surface area and contains molybdenum, vanadium, tellurium and niobium, and the use of this catalyst for the oxidative dehydrogenation of ethane to ethene or the oxidation of propane to acrylic acid and also a process for producing the catalyst is disclosed.
    Type: Application
    Filed: September 13, 2018
    Publication date: July 9, 2020
    Inventors: Gerhard MESTL, Klaus WANNINGER, Silvia NEUMANN, Peter SCHINKE
  • Patent number: 10668453
    Abstract: The present invention relates to a process for producing a composite material and also the composite material itself. The composite material contains a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and a specific SiO2 as pore former. The present invention also relates to the use of the composite material according to the invention for producing a washcoat suspension and also a process for producing a coated catalyst using the composite material according to the invention. Furthermore, the present invention also relates to a coated catalyst which has a catalytically active shell comprising the composite material according to the invention on a support body. The coated catalyst according to the invention is used for preparing [alpha],[beta]-unsaturated aldehydes from olefins.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: June 2, 2020
    Assignee: CLARIANT INTERNATIONAL LTD
    Inventors: Inga Walzel, Gerhard Mestl, Silvia Neumann, Magdalena Pritzl, Gabriele Donabauer, Robert K. Grasselli
  • Publication number: 20190366311
    Abstract: The invention relates to a method for producing a mixed oxide material containing the elements molybdenum, vanadium, niobium and tellurium, comprising the following steps: a) producing a mixture from starting compounds containing molybdenum, vanadium, niobium and a tellurium-containing starting compound, present in the tellurium in the +4 oxidation state, b) hydrothermal treatment of the mixture from starting compounds at a temperature of between 100° C. to 300° C., in order to obtain a product suspension, c) separating off and drying the solid material from the product suspension obtained in step b), d) activating the solid material in inert gas in order to obtain the mixed oxide material. The invention is characterized in that the tellurium-containing starting compound has a particle size D90 of less than 100 ?m.
    Type: Application
    Filed: January 26, 2018
    Publication date: December 5, 2019
    Inventors: Gerhard MESTL, Klaus WANNINGER, Silvia NEUMANN
  • Publication number: 20190022629
    Abstract: The present invention relates to a process for producing a composite material and also the composite material itself. The composite material contains a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and a specific SiO2 as pore former. The present invention also relates to the use of the composite material according to the invention for producing a washcoat suspension and also a process for producing a coated catalyst using the composite material according to the invention. Furthermore, the present invention also relates to a coated catalyst which has a catalytically active shell comprising the composite material according to the invention on a support body. The coated catalyst according to the invention is used for preparing [alpha],[beta]-unsaturated aldehydes from olefins.
    Type: Application
    Filed: April 24, 2018
    Publication date: January 24, 2019
    Applicant: Clariant International Ltd.
    Inventors: Inga WALZEL, Gerhard MESTL, Silvia NEUMANN, Magdalena PRITZL, Gabriele DONABAUER, Robert K. GRASSELLI
  • Patent number: 9975111
    Abstract: The present invention relates to a process for producing a composite material and also the composite material itself. The composite material contains a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and a specific SiO2 as pore former. The present invention also relates to the use of the composite material according to the invention for producing a washcoat suspension and also a process for producing a coated catalyst using the composite material according to the invention. Furthermore, the present invention also relates to a coated catalyst which has a catalytically active shell comprising the composite material according to the invention on a support body. The coated catalyst according to the invention is used for preparing [alpha],[beta]-unsaturated aldehydes from olefins.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 22, 2018
    Assignee: Clariant International Ltd.
    Inventors: Inga Walzel, Gerhard Mestl, Silvia Neumann, Magdalena Pritzl, Gabriele Donabauer, Robert K. Grasselli
  • Patent number: 9365433
    Abstract: A method for the production of a nanocrystalline molybdenum mixed oxide, the use of the molybdenum mixed oxide as catalyst for chemical conversions, in particular for a conversion of acrolein to acrylic acid as well as a catalyst that contains the molybdenum mixed oxide.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 14, 2016
    Assignee: SUED-CHEMIE IP GMBH & CO. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Hans-Jörg Wölk
  • Publication number: 20160045900
    Abstract: The present invention relates to a process for producing a composite material and also the composite material itself. The composite material contains a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and a specific SiO2 as pore former. The present invention also relates to the use of the composite material according to the invention for producing a washcoat suspension and also a process for producing a coated catalyst using the composite material according to the invention. Furthermore, the present invention also relates to a coated catalyst which has a catalytically active shell comprising the composite material according to the invention on a support body. The coated catalyst according to the invention is used for preparing [alpha],[beta]-unsaturated aldehydes from olefins.
    Type: Application
    Filed: March 20, 2014
    Publication date: February 18, 2016
    Applicant: Clariant International Ltd.
    Inventors: Inga WALZEL, Gerhard MESTL, Silvia NEUMANN, Magdalena PRITZI, Gabriele DONABAUER, Robert GRASSELL
  • Patent number: 9254482
    Abstract: A catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid, is specified, comprising a) molybdenum (Mo), b) vanadium (V), c) niobium (Nb), d) tellurium (Te), e) nickel (Ni), f) tungsten (W) and g) manganese (Mn), in which the molar ratio of at least one element, which is selected from nickel, tungsten and manganese, to molybdenum lies in the range 0.01 to 0.2, more preferably 0.05 to 0.15 and particularly preferably from 0.0025:1 to 0.3:1. Furthermore, a catalyst for the oxidation and/or oxidative dehydrogenation of hydrocarbons, a use of the catalyst material or of the catalyst, a method for producing a catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons and a method for the selective oxidation of propane to acrylic acid is specified.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 9, 2016
    Assignee: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Jozsef Margitfalvi, Andras Tompos, Lajos Istvan Vegvari
  • Patent number: 9073036
    Abstract: A catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid, comprising a) molybdenum (Mo), b) vanadium (V), c) niobium (Nb), d) tellurium (Te), e) manganese (Mn) and cobalt, in which the molar ratio of at least one element, which is selected from manganese and cobalt, to molybdenum lies in the range 0.01 to 0.2. Furthermore, a catalyst for the oxidation and/or oxidative dehydrogenation of hydrocarbons, a use of the catalyst material or of the catalyst, a method for producing a catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, and a method for the selective oxidation of propane to acrylic acid.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: July 7, 2015
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Andras Tompos, Jozsef Margitfalvi, Lajos Istvan Vegvari
  • Publication number: 20150148563
    Abstract: A catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid, is specified, comprising a) molybdenum (Mo), b) vanadium (V), c) niobium (Nb), d) tellurium (Te), e) nickel (Ni), f) tungsten (W) and g) manganese (Mn), in which the molar ratio of at least one element, which is selected from nickel, tungsten and manganese, to molybdenum lies in the range 0.01 to 0.2, more preferably 0.05 to 0.15 and particularly preferably from 0.0025:1 to 0.3:1. Furthermore, a catalyst for the oxidation and/or oxidative dehydrogenation of hydrocarbons, a use of the catalyst material or of the catalyst, a method for producing a catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons and a method for the selective oxidation of propane to acrylic acid is specified.
    Type: Application
    Filed: August 8, 2012
    Publication date: May 28, 2015
    Applicant: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Jozsef Margitfalvi, Andras Tompos, Lajos Istvan Vegvari
  • Publication number: 20140336411
    Abstract: A catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid, comprising a) molybdenum (Mo), b) vanadium (V), c) niobium (Nb), d) tellurium (Te), e) manganese (Mn) and cobalt, in which the molar ratio of at least one element, which is selected from manganese and cobalt, to molybdenum lies in the range 0.01 to 0.2. Furthermore, a catalyst for the oxidation and/or oxidative dehydrogenation of hydrocarbons, a use of the catalyst material or of the catalyst, a method for producing a catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, and a method for the selective oxidation of propane to acrylic acid.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 13, 2014
    Applicant: Clariant Produkte (Deutschland) GmbH
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Andras Tompos, Jozsef Margitfalvi, Lajos Istvan Vegvari
  • Patent number: 8759249
    Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 24, 2014
    Assignee: SUED-Chemie IP GmbH & Co. KG
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Groβmann, Silvia Neumann
  • Patent number: 8480998
    Abstract: A method for the production of a nanocrystalline bismuth-molybdenum mixed oxide, the use of the bismuth-molybdenum mixed oxide as catalyst for chemical conversions, in particular for a conversion of propylene to acrolein and/or acrylic acid or of isobutylene to methacrolein and/or methacrylic acid, as well as a catalyst that contains the bismuth-molybdenum mixed oxide.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: July 9, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Oliver Wegner, Silvia Neumann, Hans-Jörg Wölk
  • Publication number: 20110201847
    Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.
    Type: Application
    Filed: May 29, 2009
    Publication date: August 18, 2011
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Grossmann, Silvia Neumann
  • Publication number: 20110166395
    Abstract: The present invention relates to a method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.
    Type: Application
    Filed: May 29, 2009
    Publication date: July 7, 2011
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Grossmann, Silvia Neumann, Gerhard Mestl
  • Publication number: 20110105790
    Abstract: A method for the production of a nanocrystalline molybdenum mixed oxide, the use of the molybdenum mixed oxide as catalyst for chemical conversions, in particular for a conversion of acrolein to acrylic acid as well as a catalyst that contains the molybdenum mixed oxide.
    Type: Application
    Filed: April 3, 2009
    Publication date: May 5, 2011
    Applicant: SUD-CHEMIE AG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Hans-Jörg Wölk
  • Publication number: 20110092734
    Abstract: A method for the production of a nanocrystalline bismuth-molybdenum mixed oxide, the use of the bismuth-molybdenum mixed oxide as catalyst for chemical conversions, in particular for a conversion of propylene to acrolein and/or acrylic acid or of isobutylene to methacrolein and/or methacrylic acid, as well as a catalyst that contains the bismuth-molybdenum mixed oxide.
    Type: Application
    Filed: April 3, 2009
    Publication date: April 21, 2011
    Applicant: SUD-CHEMIE AG
    Inventors: Alfred Hagemeyer, Oliver Wegner, Silvia Neumann, Hans-Jorg Wolk
  • Publication number: 20100190638
    Abstract: A method for producing a shell catalyst comprising a porous catalyst support shaped body with an outer shell containing at least one transition metal in metal form. To provide a shell catalyst with a relatively small shell thickness, a device is set up to circulate the catalyst support shaped bodies by means of process gases with a reductive effect. The device is charged with catalyst support shaped bodies that are circulated by means of a process gas with a reductive effect, an outer shell of the catalyst support shaped bodies is impregnated with a transition-metal precursor compound by spraying the circulating catalyst support shaped bodies with a solution containing the transition-metal precursor compound, the metal component of the transition-metal precursor compound is converted into the metal form by reduction by means of the process gas, and the catalyst support shaped bodies sprayed with the solution are dried.
    Type: Application
    Filed: May 30, 2008
    Publication date: July 29, 2010
    Applicant: Sud-Chemie AG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck, Silvia Neumann