Patents by Inventor Silvia Schintke

Silvia Schintke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6947311
    Abstract: This invention relates to the controlled two-dimensional structural transition of a dipole monolayer at a metal, semi-conducting or insulating interface. The dipole monolayer consists of objects/molecules with a permanent electric dipole moment. A transition between the structures of the molecular layer can be performed locally and reversibly by applying an electrical field and the structures/patterns can be reversibly switched many times between two different structures/states. Both of the two structures, the ordered and the disordered structures, are intrinsically stable without the presence of the switching electrical field. This controlled switch of the local layer structure can be used to change layer properties (i.e., mechanical, electrical, optical properties). The controlled reversible modifications of the dipole monolayer structures are usable as bit assignments in data storage applications for example.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: September 20, 2005
    Assignee: University of Basel
    Inventors: Simon Berner, Silvia Schintke, Luca Ramoino, Michael de Wild, Thomas A. Jung
  • Publication number: 20050002222
    Abstract: This invention relates to the controlled two-dimensional structural transition of a dipole monolayer at a metal, semi-conducting or insulating interface. The dipole monolayer consists of objects/molecules with a permanent electric dipole moment. A transition between the structures of the molecular layer can be performed locally and reversibly by applying an electrical field and the structures/patterns can be reversibly switched many times between two different structures/states. Both of the two structures, the ordered and the disordered structures, are intrinsically stable without the presence of the switching electrical field. This controlled switch of the local layer structure can be used to change layer properties (i.e., mechanical, electrical, optical properties). The controlled reversible modifications of the dipole monolayer structures are usable as bit assignments in data storage applications for example.
    Type: Application
    Filed: June 9, 2004
    Publication date: January 6, 2005
    Applicant: University of Basel
    Inventors: Simon Berner, Silvia Schintke, Luca Ramoino, Michael de Wild, Thomas Jung