Patents by Inventor Sim Y. Loo

Sim Y. Loo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9639652
    Abstract: A system, method and computer program product for implementing a quiescent current leakage specific model into semiconductor device design and circuit design flows. The leakage model covers all device geometries with wide temperature and voltage ranges and, without the need for stacking factor calculations nor spread sheet based IDDQ calculations. The leakage model for IDDQ calculation incorporates further parasitic and proximity effects. The leakage model implements leakage calculations at different levels of testing, e.g., from a single device to a full chip design, and are integrated within one single model. The leakage model implements leakage calculations at different levels of testing with the leverage of a single switch setting. The implementation is via a hardware definition language code or object oriented code that can be compiled and operated using a netlist of interest, e.g., for conducting a performance analysis.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Paul Chang, Jie Deng, Terrence B. Hook, Sim Y. Loo, Anda C. Mocuta, Jae-Eun Park, Kern Rim, Xiaojun Yu
  • Publication number: 20140123097
    Abstract: A system, method and computer program product for implementing a quiescent current leakage specific model into semiconductor device design and circuit design flows. The leakage model covers all device geometries with wide temperature and voltage ranges and, without the need for stacking factor calculations nor spread sheet based IDDQ calculations. The leakage model for IDDQ calculation incorporates further parasitic and proximity effects. The leakage model implements leakage calculations at different levels of testing, e.g., from a single device to a full chip design, and are integrated within one single model. The leakage model implements leakage calculations at different levels of testing with the leverage of a single switch setting. The implementation is via a hardware definition language code or object oriented code that can be compiled and operated using a netlist of interest, e.g., for conducting a performance analysis.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul Chang, Jie Deng, Terrence B. Hook, Sim Y. Loo, Anda C. Mocuta, Jeae-Eun Park, Kern Rim, Xiaojun Yu
  • Patent number: 8626480
    Abstract: A system, method and computer program product for implementing a quiescent current leakage specific model into semiconductor device design and circuit design flows. The leakage model covers all device geometries with wide temperature and voltage ranges and, without the need for stacking factor calculations nor spread sheet based IDDQ calculations. The leakage model for IDDQ calculation incorporates further parasitic and proximity effects. The leakage model implements leakage calculations at different levels of testing, e.g., from a single device to a full chip design, and are integrated within one single model. The leakage model implements leakage calculations at different levels of testing with the leverage of a single switch setting. The implementation is via a hardware definition language code or object oriented code that can be compiled and operated using a netlist of interest, e.g., for conducting a performance analysis.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Paul Chang, Jie Deng, Terrence B. Hook, Sim Y. Loo, Anda C. Mocuta, Jae-Eun Park, Kern Rim, Xiaojun Yu
  • Patent number: 8032349
    Abstract: Disclosed herein are embodiments of an automated, fast and efficient method of generating a customized compact model that represents a semiconductor device at the chip, wafer or multi-wafer level in a specific manufacturing environment. Specifically, measurement data is collected from a specific manufacturing environment and sorted by channel lengths. Then, an optimizer is used to generate customized modeling parameters based on the measurement data. The optimization processes is a multi-step process. First, a first set of modeling parameters is generated based on measurement data associated with a long channel length. Second, a second set of modeling parameters is generated based on the first set and on measurement data associated with a short channel length. Finally, the customized modeling parameters are generated based on both the first set and the second set. The customized modeling parameters are used to generate a customized compact device model representative of the specific manufacturing environment.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Sim Y. Loo, Steven G. Lovejoy, Myung-Hee Na, Edward J. Nowak, Scott K. Springer
  • Publication number: 20110082680
    Abstract: A system, method and computer program product for implementing a quiescent current leakage specific model into semiconductor device design and circuit design flows. The leakage model covers all device geometries with wide temperature and voltage ranges and, without the need for stacking factor calculations nor spread sheet based IDDQ calculations. The leakage model for IDDQ calculation incorporates further parasitic and proximity effects. The leakage model implements leakage calculations at different levels of testing, e.g., from a single device to a full chip design, and are integrated within one single model. The leakage model implements leakage calculations at different levels of testing with the leverage of a single switch setting. The implementation is via a hardware definition language code or object oriented code that can be compiled and operated using a netlist of interest, e.g., for conducting a performance analysis.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul Chang, Jie Deng, Terrence B. Hook, Sim Y. Loo, Anda C. Mocuta, Jae-Eun Park, Kern Rim, Xiaojun Yu
  • Publication number: 20080183442
    Abstract: Disclosed herein are embodiments of an automated, fast and efficient method of generating a customized compact model that represents a semiconductor device at the chip, wafer or multi-wafer level in a specific manufacturing environment. Specifically, measurement data is collected from a specific manufacturing environment and sorted by channel lengths. Then, an optimizer is used to generate customized modeling parameters based on the measurement data. The optimization processes is a multi-step process. First, a first set of modeling parameters is generated based on measurement data associated with a long channel length. Second, a second set of modeling parameters is generated based on the first set and on measurement data associated with a short channel length. Finally, the customized modeling parameters are generated based on both the first set and the second set. The customized modeling parameters are used to generate a customized compact device model representative of the specific manufacturing environment.
    Type: Application
    Filed: January 25, 2007
    Publication date: July 31, 2008
    Inventors: Sim Y. Loo, Steven G. Lovejoy, Myung-Hee Na, Edward J. Nowak, Scott K. Springer