Patents by Inventor Simeon REALOV

Simeon REALOV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240007087
    Abstract: Techniques and mechanisms for an integrated clock gate (ICG) to selectively output a clock signal, and to provide frequency division functionality. In an embodiment, an ICG circuit comprises first circuitry which is coupled to receive a first clock signal, and second circuitry which is coupled to receive a control signal. The first circuitry provides a single edge triggered flip-flop functionality, and is coupled to communicate a feedback signal which the first circuitry is further coupled to receive. Based on the control signal and the feedback signal, the second circuitry performs an exclusive OR (XOR) operation to selectively enable the first circuitry to generate a second clock signal based on the first clock signal. In another embodiment, a frequency of the second clock signal is substantially equal to one half of a frequency of the first clock signal.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Mark Anders, Ram Krishnamurthy
  • Patent number: 11791819
    Abstract: A parasitic-aware single-edge triggered flip-flop reduces clock power through layout optimization, enabled through process-circuit co-optimization. The static pass-gate master-slave flip-flop utilizes novel layout optimization enabling significant power reduction. The layout removes the clock poly over notches in the diffusion area. Poly lines implement clock nodes. The poly lines are aligned between n-type and p-type active regions.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: October 17, 2023
    Assignee: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Ram Krishnamurthy
  • Patent number: 11757434
    Abstract: A fast Mux-D scan flip-flop is provided, which bypasses a scan multiplexer to a master keeper side path, removing delay overhead of a traditional Mux-D scan topology. The design is compatible with simple scan methodology of Mux-D scan, while preserving smaller area and small number of inputs/outputs. Since scan Mux is not in the forward critical path, circuit topology has similar high performance as level-sensitive scan flip-flop and can be easily converted into bare pass-gate version. The new fast Mux-D scan flip-flop combines the advantages of the conventional LSSD and Mux-D scan flip-flop, without the disadvantages of each.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Simeon Realov, Mahesh Kumashikar, Ram Krishnamurthy
  • Patent number: 11442103
    Abstract: An apparatus is provided which comprises: a multi-bit quad latch with an internally coupled level sensitive scan circuitry; and a combinational logic coupled to an output of the multi-bit quad latch. Another apparatus is provided which comprises: a plurality of sequential logic circuitries; and a clocking circuitry comprising inverters, wherein the clocking circuitry is shared by the plurality of sequential logic circuitries.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 13, 2022
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Ram Krishnamurthy, Satish Damaraju, Steven Hsu, Simeon Realov
  • Patent number: 11398814
    Abstract: A new family of shared clock single-edge triggered flip-flops that reduces a number of internal clock devices from 8 to 6 devices to reduce clock power. The static pass-gate master-slave flip-flop has no performance penalty compared to the flip-flops with 8 clock devices thus enabling significant power reduction. The flip-flop intelligently maintains the same polarity between the master and slave stages which enables the sharing of the master tristate and slave state feedback clock devices without risk of charge sharing across all combinations of clock and data toggling. Because of this, the state of the flip-flop remains undisturbed, and is robust across charge sharing noise. A multi-bit time borrowing internal stitched flip-flop is also described, which enables internal stitching of scan in a high performance time-borrowing flip-flop without incurring increase in layout area.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: July 26, 2022
    Assignee: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Satish Damaraju, Ram Krishnamurthy
  • Publication number: 20220224316
    Abstract: A fast Mux-D scan flip-flop is provided, which bypasses a scan multiplexer to a master keeper side path, removing delay overhead of a traditional Mux-D scan topology. The design is compatible with simple scan methodology of Mux-D scan, while preserving smaller area and small number of inputs/outputs. Since scan Mux is not in the forward critical path, circuit topology has similar high performance as level-sensitive scan flip-flop and can be easily converted into bare pass-gate version. The new fast Mux-D scan flip-flop combines the advantages of the conventional LSSD and Mux-D scan flip-flop, without the disadvantages of each.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 14, 2022
    Inventors: Amit Agarwal, Steven Hsu, Simeon Realov, Mahesh Kumashikar, Ram Krishnamurthy
  • Patent number: 11296681
    Abstract: A fast Mux-D scan flip-flop is provided, which bypasses a scan multiplexer to a master keeper side path, removing delay overhead of a traditional Mux-D scan topology. The design is compatible with simple scan methodology of Mux-D scan, while preserving smaller area and small number of inputs/outputs. Since scan Mux is not in the forward critical path, circuit topology has similar high performance as level-sensitive scan flip-flop and can be easily converted into bare pass-gate version. The new fast Mux-D scan flip-flop combines the advantages of the conventional LSSD and Mux-D scan flip-flop, without the disadvantages of each.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 5, 2022
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Simeon Realov, Mahesh Kumashikar, Ram Krishnamurthy
  • Publication number: 20210281250
    Abstract: A new family of shared clock single-edge triggered flip-flops that reduces a number of internal clock devices from 8 to 6 devices to reduce clock power. The static pass-gate master-slave flip-flop has no performance penalty compared to the flip-flops with 8 clock devices thus enabling significant power reduction. The flip-flop intelligently maintains the same polarity between the master and slave stages which enables the sharing of the master tristate and slave state feedback clock devices without risk of charge sharing across all combinations of clock and data toggling. Because of this, the state of the flip-flop remains undisturbed, and is robust across charge sharing noise. A multi-bit time borrowing internal stitched flip-flop is also described, which enables internal stitching of scan in a high performance time-borrowing flip-flop without incurring increase in layout area.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 9, 2021
    Applicant: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Satish Damaraju, Ram Krishnamurthy
  • Publication number: 20210263100
    Abstract: An apparatus is provided which comprises: a multi-bit quad latch with an internally coupled level sensitive scan circuitry; and a combinational logic coupled to an output of the multi-bit quad latch. Another apparatus is provided which comprises: a plurality of sequential logic circuitries; and a clocking circuitry comprising inverters, wherein the clocking circuitry is shared by the plurality of sequential logic circuitries.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 26, 2021
    Applicant: Intel Corporation
    Inventors: Amit Agarwal, Ram Krishnamurthy, Satish Damaraju, Steven Hsu, Simeon Realov
  • Patent number: 11054470
    Abstract: A family of novel, low power, min-drive strength, double-edge triggered (DET) input data multiplexer (Mux-D) scan flip-flop (FF) is provided. The flip-flop takes the advantage of no state node in the slave to remove data inverters in a traditional DET FF to save power, without affecting the flip-flop functionality under coupling/glitch scenarios.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 6, 2021
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Anupama Ambardar Thaploo, Simeon Realov, Ram Krishnamurthy
  • Publication number: 20210203323
    Abstract: A parasitic-aware single-edge triggered flip-flop reduces clock power through layout optimization, enabled through process-circuit co-optimization. The static pass-gate master-slave flip-flop utilizes novel layout optimization enabling significant power reduction. The layout removes the clock poly over notches in the diffusion area. Poly lines implement clock nodes. The poly lines are aligned between n-type and p-type active regions.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 1, 2021
    Applicant: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Ram Krishnamurthy
  • Publication number: 20210194468
    Abstract: A family of novel, low power, min-drive strength, double-edge triggered (DET) input data multiplexer (Mux-D) scan flip-flop (FF) is provided. The flip-flop takes the advantage of no state node in the slave to remove data inverters in a traditional DET FF to save power, without affecting the flip-flop functionality under coupling/glitch scenarios.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Applicant: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Anupama Ambardar Thaploo, Simeon Realov, Ram Krishnamurthy
  • Publication number: 20210194469
    Abstract: A fast Mux-D scan flip-flop is provided, which bypasses a scan multiplexer to a master keeper side path, removing delay overhead of a traditional Mux-D scan topology. The design is compatible with simple scan methodology of Mux-D scan, while preserving smaller area and small number of inputs/outputs. Since scan Mux is not in the forward critical path, circuit topology has similar high performance as level-sensitive scan flip-flop and can be easily converted into bare pass-gate version. The new fast Mux-D scan flip-flop combines the advantages of the conventional LSSD and Mux-D scan flip-flop, without the disadvantages of each.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Applicant: Intel Corporation
    Inventors: Amit Agarwal, Steven Hsu, Simeon Realov, Mahesh Kumashikar, Ram Krishnamurthy
  • Patent number: 11009549
    Abstract: An apparatus is provided which comprises: a multi-bit quad latch with an internally coupled level sensitive scan circuitry; and a combinational logic coupled to an output of the multi-bit quad latch. Another apparatus is provided which comprises: a plurality of sequential logic circuitries; and a clocking circuitry comprising inverters, wherein the clocking circuitry is shared by the plurality of sequential logic circuitries.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Amit Agarwal, Ram Krishnamurthy, Satish Damaraju, Steven Hsu, Simeon Realov
  • Publication number: 20210119616
    Abstract: An apparatus is provided which comprises: a first flip-flop (FF) cell with a data path multiplexed with a scan-data path, wherein the scan-data path is independent of a min-delay buffer, wherein the first FF cell has a memory element formed of at least two inverting cells, wherein the two inverting cells are coupled together via a common node; and a second FF cell with a data path multiplexed with a scan-data path, wherein the scan-data path of the second FF cell is independent of a min-delay buffer, and wherein the scan-data path of the second FF cell is coupled to the common node of the first FF cell.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 22, 2021
    Applicant: Intel Corporation
    Inventors: Steven K. HSU, Amit AGARWAL, Simeon REALOV
  • Patent number: 10862462
    Abstract: An apparatus is provided which comprises: a first flip-flop (FF) cell with a data path multiplexed with a scan-data path, wherein the scan-data path is independent of a min-delay buffer, wherein the first FF cell has a memory element formed of at least two inverting cells, wherein the two inverting cells are coupled together via a common node; and a second FF cell with a data path multiplexed with a scan-data path, wherein the scan-data path of the second FF cell is independent of a min-delay buffer, and wherein the scan-data path of the second FF cell is coupled to the common node of the first FF cell.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: December 8, 2020
    Assignee: Intel Corporation
    Inventors: Steven K. Hsu, Amit Agarwal, Simeon Realov
  • Publication number: 20200150179
    Abstract: An apparatus is provided which comprises: a multi-bit quad latch with an internally coupled level sensitive scan circuitry; and a combinational logic coupled to an output of the multi-bit quad latch. Another apparatus is provided which comprises: a plurality of sequential logic circuitries; and a clocking circuitry comprising inverters, wherein the clocking circuitry is shared by the plurality of sequential logic circuitries.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Applicant: Intel Corporation
    Inventors: Amit Agarwal, Ram Krishnamurthy, Satish Damaraju, Steven Hsu, Simeon Realov
  • Publication number: 20200144995
    Abstract: An apparatus is provided which comprises: a first flip-flop (FF) cell with a data path multiplexed with a scan-data path, wherein the scan-data path is independent of a min-delay buffer, wherein the first FF cell has a memory element formed of at least two inverting cells, wherein the two inverting cells are coupled together via a common node; and a second FF cell with a data path multiplexed with a scan-data path, wherein the scan-data path of the second FF cell is independent of a min-delay buffer, and wherein the scan-data path of the second FF cell is coupled to the common node of the first FF cell.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 7, 2020
    Applicant: Intel Corporation
    Inventors: Steven K. HSU, Amit AGARWAL, Simeon REALOV
  • Patent number: 10498314
    Abstract: An apparatus is provided which comprises: a first flip-flop (FF) cell with a data path multiplexed with a scan-data path, wherein the scan-data path is independent of a min-delay buffer, wherein the first FF cell has a memory element formed of at least two inverting cells, wherein the two inverting cells are coupled together via a common node; and a second FF cell with a data path multiplexed with a scan-data path, wherein the scan-data path of the second FF cell is independent of a min-delay buffer, and wherein the scan-data path of the second FF cell is coupled to the common node of the first FF cell.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 3, 2019
    Assignee: Intel Corporation
    Inventors: Steven K. Hsu, Amit Agarwal, Simeon Realov
  • Patent number: 10491217
    Abstract: An apparatus is provided which comprises: a first inverter to receive a clock; a pass-gate coupled to the first inverter; a second inverter coupled to the pass-gate and to provide an output clock; and a device coupled to the second inverter and the pass-gate, wherein the transistor and the pass-gate are controllable by a logic that depends on logic values of at least two signals (e.g., an enable and the clock).
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: November 26, 2019
    Assignee: Intel Corporation
    Inventors: Steven Hsu, Amit Agarwal, Simeon Realov, Iqbal Rajwani, Ram K. Krishnamurthy