Patents by Inventor Simha Levene

Simha Levene has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9638807
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 2, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cornelis Ronda, Herbert Schreinemacher, Guenter Zeitler, Norbert Conrads, Simha Levene
  • Patent number: 9599728
    Abstract: A scintillator pack (2) and a CT X-ray detector array (1) comprising such scintillator pack (2) are proposed. The scintillator pack (2) comprises an array of scintillator pixels (3). At a bottom surface (31) of each scintillator pixel (3), an X-ray absorbing encapsulation (13) is provided. This encapsulation (13) comprises an electrically insulating highly X-ray absorbing material having an atomic number greater than 60 such as, for example, Bismuth oxide (Bi2O3). The X-ray absorbing encapsulation (13) is interposed between the scintillator pixels (3) and an electronic circuit (19). The electronic circuit (19) may be provided as an ASIC in CMOS technology and may therefore be sensitive to X-ray induced damage. The encapsulation (13) provides for good X-ray protection of such electronic circuit (19).
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: March 21, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Simha Levene, Nicolaas Johannes Anthonius Van Veen, Lev Gregorian, Antonius Wilhelmus Maria De Laat, Gerardus Franciscus Cornelius Maria Lijten, Rafael Goshen
  • Patent number: 9488738
    Abstract: A light-reflecting material of a radiation detector, which also comprises photo-detecting elements and imaging elements adjacent to the photo-detecting elements, is provided. Typically, epoxy resin is used as the light-reflecting material. A tough, pliable resin may be used for the photo-detecting elements. This has the advantage of reducing thermal stresses inside the radiation detector, thus reducing the risk of delamination due to e.g. temperature shifts. Moreover, the tough, pliable resin preferably also has a low refractive index, which may increase the scattering co-efficient of the resin as compared to epoxy resin, which has a refractive index of 1.58. The layer thickness of a low-refractive index resin may thereby be reduced as compared to the layer thickness of epoxy resin for a given level of optical crosstalk. Preferable resins are silicon resins and resins of thermoplastic fluoropolymers.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: November 8, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Simha Levene, Naor Wainer
  • Patent number: 9322939
    Abstract: Low cost large area photodetector arrays are provided. In a first embodiment, the photodetectors comprise an inorganic photoelectric conversion material formed in a single thick layer of material. In a second embodiment, the photodetectors comprise a lamination of several thin layers of an inorganic photoelectric conversion material, the combined thickness of which is large enough to absorb incoming x-rays with a high detector quantum efficiency. In a third embodiment, the photodetectors comprise a lamination of several layers of inorganic or organic photoelectric conversion material, wherein each layer has a composite scintillator coating.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 26, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Simha Levene, Ami Altman, Naor Wainer, Cornelis Reinder Ronda, Eliav Itshak Haskal, Dagobert Michel De Leeuw
  • Publication number: 20160061962
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Application
    Filed: June 27, 2013
    Publication date: March 3, 2016
    Inventors: Cornelis RONDA, Herbert SCHREINEMACHER, Guenter ZEITLER, Norbert CONRADS, Simha LEVENE
  • Patent number: 9140808
    Abstract: A vertical radiation sensitive detector array (114) includes at least one detector leaf (118). The detector leaf includes a scintillator array (210, 502, 807, 907), including, at least, a top side (212) which receives radiation, a bottom side (218) and a rear side (214) and a photo-sensor circuit board (200, 803, 903), including a photo-sensitive region (202, 508, 803, 903), optically coupled to the rear side of the scintillator array. The detector leaf further includes processing electronics (406) disposed below the scintillator array, a flexible circuit board (220) electrically coupling the photo-sensitive region and the processing electronics, and a radiation shield (236) disposed below the bottom of the scintillator array, between the scintillator and the processing electronics, thereby shielding the processing electronics from residual radiation passing through the scintillator array. Some embodiments incorporate rare earth iodides such as SrI 2 (Eu).
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 22, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Cornelis Reinder Ronda, Simha Levene, Raz Carmi, Naor Wainer, Amir Livne, Roman Shiriaev
  • Patent number: 9012857
    Abstract: An imaging system (100) includes a radiation sensitive detector array (110). The detector array includes at least two scintillator array layers (116). The detector array further includes at least two corresponding photosensor array layers (114). At least one of the at least two photosensor array layers is located between the at least two scintillator array layers in a direction of incoming radiation. The at least one of the at least two photosensor array layers has a thickness that is less than thirty microns.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: April 21, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Nicolaas Johannes Anthonius Van Veen, Amiaz Altman, Igor Uman, Rafael Goshen
  • Patent number: 8981311
    Abstract: A scintillator element (114) comprising uncured scintillator material (112) is formed and optically cured to generate a cured scintillator element (122, 122?). The uncured scintillator material suitably combines at least a scintillator material powder and an uncured polymeric host. In a reel to reel process, a flexible array of optical detectors is transferred from a source reel (100) to a take-up reel (106) and the uncured scintillator material (112) is disposed on the flexible array and optically cured during said transfer. Such detector layers (31, 32, 33, 34, 35) are stackable to define a multi-layer computed tomography (CT) detector array (20). Detector element channels (50, 50?, 50?) include a preamplifier (52) and switching circuitry (54, 54?, 54?) having a first mode connecting the preamplifier with at least first detector array layers (31, 32) and a second mode connecting the preamplifier with at least second detector array layers (33, 34, 35).
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: March 17, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Naor Wainer, Amiaz Altman, Rafael Goshen, Cornelis Reinder Ronda
  • Patent number: 8963097
    Abstract: A method includes obtaining a plurality of the two dimensional arrays of gadolinium oxysulfide. An array has wider width non-silver based spacers (304) that extend between rows or columns of dixels and narrower width non-silver based spacers (306) that extend between the other of the rows or columns of dixels. The method further includes applying a silver coating (312) to at least one of a top or bottom surface of the arrays. The method further includes forming a stack by stacking the silver coated arrays, one on top of another (FIG. 3B), with substantially equal layers of adhesive between adjacent arrays. The method further includes slicing the stack through the wider non-silver based spacers to form two dimensional arrays of scintillator dixels (314) having silver based spacers (312) along at least one direction of the array.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Simha Levene
  • Publication number: 20150001398
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Cornelis RONDA, Herbert SCHREINEMACHER, Guenter ZEITLER, Norbert CONRADS, Simha LEVENE
  • Publication number: 20140321609
    Abstract: A scintillator pack (2) and a CT X-ray detector array (1) comprising such scintillator pack (2) are proposed. The scintillator pack (2) comprises an array of scintillator pixels (3). At a bottom surface (31) of each scintillator pixel (3), an X-ray absorbing encapsulation (13) is provided. This encapsulation (13) comprises an electrically insulating highly X-ray absorbing material having an atomic number greater than 60 such as, for example, Bismuth oxide (Bi2O3). The X-ray absorbing encapsulation (13) is interposed between the scintillator pixels (3) and an electronic circuit (19). The electronic circuit (19) may be provided as an ASIC in CMOS technology and may therefore be sensitive to X-ray induced damage. The encapsulation (13) provides for good X-ray protection of such electronic circuit (19).
    Type: Application
    Filed: November 23, 2012
    Publication date: October 30, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Simha Levene, Nicolaas Johannes Anthonius Van Veen, Lev Gregorian, Antonius Wilhelmus Maria De Laat, Gerardus Franciscus Cornelis Maria Lijten, Rafael Goshen
  • Patent number: 8755488
    Abstract: A system comprises a radiation source (110), including a anode (112) and a cathode (114), a high voltage generator (202) that generates a source voltage that is applied across the anode (112) and cathode (114), wherein the source voltage accelerates electrons from the cathode (114) towards the anode (112), and a modulation wave generator (204) that generates a modulation voltage wave having a non-zero amplitude, which is combined with and modulates the source voltage between at least two different voltages.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: June 17, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Amiaz Altman
  • Publication number: 20130327947
    Abstract: A vertical radiation sensitive detector array (114) includes at least one detector leaf (118). The detector leaf includes a scintillator array (210, 502, 807, 907), including, at least, a top side (212) which receives radiation, a bottom side (218) and a rear side (214) and a photo-sensor circuit board (200, 803, 903), including a photo-sensitive region (202, 508, 803, 903), optically coupled to the rear side of the scintillator array. The detector leaf further includes processing electronics (406) disposed below the scintillator array, a flexible circuit board (220) electrically coupling the photo-sensitive region and the processing electronics, and a radiation shield (236) disposed below the bottom of the scintillator array, between the scintillator and the processing electronics, thereby shielding the processing electronics from residual radiation passing through the scintillator array. Some embodiments incorporate rare earth iodides such as SrI 2 (Eu).
    Type: Application
    Filed: January 30, 2012
    Publication date: December 12, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Cornelis Reinder Ronda, Simha Levene, Raz Carmi, Naor Wainer, Amir Livne, Roman Shiriaev
  • Patent number: 8586933
    Abstract: A radiation-sensitive detector (120) includes a scintillator array (124) coupled with a photosensor array (140) via an adhesive laminate (144). The photosensor (140) has a plurality of dixels (136). The adhesive laminate (144) includes a material free region that extends through the adhesive laminate (144) from the scintillator array (124) to the photosensor array (140) and that is located between a pair of adjacent dixels (136).
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 19, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Gerardus F. C. M. Lijten
  • Publication number: 20130292574
    Abstract: An imaging system (100) includes a radiation sensitive detector array (110). The detector array includes at least two scintillator array layers (116). The detector array further includes at least two corresponding photosensor array layers (114). At least one of the at least two photosensor array layers is located between the at least two scintillator array layers in a direction of incoming radiation. The at least one of the at least two photosensor array layers has a thickness that is less than thirty microns.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: SIMHA LEVENE, NICOLAAS JOHANNES ANTHONIUS VAN VEEN, AMIAZ ALTMAN, IGOR UMAN, RAFAEL GOSHEN
  • Patent number: 8513612
    Abstract: An imaging system includes a macro organic photodiode array with rows and columns of printed photodiodes. The array may be bendable for easy manufacture and assembly on a curved support within an imaging system. Two or more layers of photodiodes may be provided for use in a spectral CT imaging system or as slices.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: August 20, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Ami Altman, Naor Wainer, Dagobert M. de Leeuw, Eliav Haskal
  • Patent number: 8492724
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: July 23, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Cornelis Ronda, Herbert Schreinemacher, Guenter Zeltier, Norbert Conrads, Simha Levene
  • Publication number: 20130108008
    Abstract: A method includes obtaining a plurality of the two dimensional arrays of gadolinium oxysulfide. An array has wider width non-silver based spacers (304) that extend between rows or columns of dixels and narrower width non-silver based spacers (306) that extend between the other of the rows or columns of dixels. The method further includes applying a silver coating (312) to at least one of a top or bottom surface of the arrays. The method further includes forming a stack by stacking the silver coated arrays, one on top of another (FIG. 3B), with substantially equal layers of adhesive between adjacent arrays. The method further includes slicing the stack through the wider non- silver based spacers to form two dimensional arrays of scintillator dixels (314) having silver based spacers (312) along at least one direction of the array.
    Type: Application
    Filed: June 24, 2011
    Publication date: May 2, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Simha Levene
  • Patent number: 8415629
    Abstract: A radiation-sensitive detector includes a photosensor layer with one or more photosensor dixels and a composite scintillator layer with one or more scintillator dixels optically coupled to the photosensor layer. The composite scintillator layer is formed from a mixture including a scintillator material having a first refractive index corresponding to a first wavelength and a photo-resist used in micro-electromechanical systems production, having a second refractive index corresponding to the first wavelength. The first and second refractive indices are substantially matched, and the composite scintillator layer produces light having the first wavelength and that is indicative of x-radiation detected thereby.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 9, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Simha Levene, Cornelis R. Ronda
  • Publication number: 20130058452
    Abstract: A scintillator element (114) comprising uncured scintillator material (112) is formed and optically cured to generate a cured scintillator element (122, 122?). The uncured scintillator material suitably combines at least a scintillator material powder and an uncured polymeric host. In a reel to reel process, a flexible array of optical detectors is transferred from a source reel (100) to a take-up reel (106) and the uncured scintillator material (112) is disposed on the flexible array and optically cured during said transfer. Such detector layers (31, 32, 33, 34, 35) are stackable to define a multi-layer computed tomography (CT) detector array (20). Detector element channels (50, 50?, 50?) include a preamplifier (52) and switching circuitry (54, 54?, 54?) having a first mode connecting the preamplifier with at least first detector array layers (31, 32) and a second mode connecting the preamplifier with at least second detector array layers (33, 34, 35).
    Type: Application
    Filed: April 25, 2011
    Publication date: March 7, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Simha Levene, Naor Wainer, Amiaz Altman, Rafael Goshen, Cornelis Reinder Ronda