Patents by Inventor Simon Greger Fellin

Simon Greger Fellin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384895
    Abstract: An optical method for identifying locations of objects in a plane, including serially projecting light beams along a detection area, from a plurality of locations along an edge of the detection area, whereby a reflective object inserted into the detection area reflects the projected light beams, directing the reflections of the projected light beams arriving at the edge of the detection area onto a plurality of light detectors, in a manner that maximizes amounts of reflected light arriving at the detectors when the light arrives at a particular angle in relation to the edge, and calculating two-dimensional coordinates of the inserted object in the detection area based on the particular angle and the outputs of the detectors.
    Type: Application
    Filed: July 2, 2023
    Publication date: November 30, 2023
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Publication number: 20230325065
    Abstract: A vehicle autonomous drive system including a steering wheel, a sensor operable to identify each gesture component within a set of gesture components performed on the steering wheel by a driver of the vehicle, the set of gesture components including thumb-tap, thumb touch-and-hold, thumb-glide, hand-grab and hand-tap, a processor for an autonomous drive system in the vehicle, receiving from the sensor, a series of time-stamped, contact coordinates for the gesture components identified by the sensor, and a non-transitory computer readable medium storing instructions thereon that, when executed by the processor, cause the processor to construct compound gestures based on the series of time-stamped, contact coordinates, and to activate features of the autonomous drive system in response to the compound gestures.
    Type: Application
    Filed: May 12, 2023
    Publication date: October 12, 2023
    Inventors: Björn Alexander Jubner, Björn Thomas Eriksson, Gunnar Martin Fröjdh, Simon Greger Fellin, Stefan Johannes Holmgren
  • Patent number: 11733808
    Abstract: A sensor for a control panel, including a housing along an edge of the panel, light emitters projecting light along an in-air detection plane over the panel and detectors detecting reflections of the projected light, reflected by an object in the detection plane, lenses oriented such that each detector receives maximum light intensity when light enters a corresponding lens at a particular angle, whereby for each emitter-detector pair, when the object is located at a specific position in the detection plane, light emitted by the emitter of that pair is reflected by the object back through one of the lenses at the particular angle to the detector of that pair, the specific position being associated with that emitter-detector pair, and a processor configured to determine panel locations, map each location to a position in the detection plane associated with an emitter-detector pair, mapping the panel to the detection plane.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: August 22, 2023
    Assignee: Neonode, Inc.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 11650727
    Abstract: A vehicle gesture control system for a host vehicle, the host vehicle including an adaptive cruise control or autonomous drive arrangement, the system including a sensor to detect gestures performed by a driver on the surface of a steering wheel grip in the host vehicle, the steering wheel grip including a circular tube surrounding a steering wheel that rotates about a steering column, and a processor receiving outputs from the sensor and connected to a memory unit storing instructions for the processor to activate a plurality of features of the adaptive cruise control or autonomous drive arrangement in response to a respective plurality of different gestures detected by the sensor, wherein two of the gestures represent “up” and “down” commands and include movement of the driver's thumb in opposite directions, respectively, around a lateral section of the steering wheel grip that faces the driver.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: May 16, 2023
    Assignee: NEONODE INC.
    Inventors: Björn Alexander Jubner, Björn Thomas Eriksson, Gunnar Martin Fröjdh, Simon Greger Fellin, Stefan Johannes Holmgren
  • Publication number: 20210349569
    Abstract: A sensor determining coordinates of a proximal object, including a one-dimensional array of alternating light emitters and detectors, including a plurality of light emitters projecting light along a detection plane, and a plurality of light detectors detecting reflections of the projected light, by a reflective object in the detection plane, and a plurality of lenses mounted and oriented relative to the emitters and the detectors such that the light detectors receive maximum intensity when light enters a corresponding lens at a first particular angle, whereby for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the lenses and is reflected by the object back through one of the lenses to the detector of that pair when the object is located at one of a set of positions in the detection plane, that position being associated with that emitter-detector pair.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 11, 2021
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 11073948
    Abstract: A modular proximity sensor including a plurality of sensor modules, each sensor module including a housing, lenses, light detectors, each detector positioned along the image plane of a respective lens so as to receive maximum light intensity when light enters the lens at a particular angle, light emitters, each emitter positioned in relation to a respective lens so as to project light into a detection zone, an activating unit synchronously co-activating each emitter with at least one of the detectors, and a calculating unit receiving detector outputs corresponding to amounts of projected light reflected by an object in the detection zone, and calculating a two-dimensional location of the object in the detection zone based on the detector outputs and the particular angle, wherein neighboring sensor modules monitor different detection zones, and a processor receiving outputs from each sensor module and mapping the object location in multiple detection zones over time.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 27, 2021
    Assignee: NEONODE INC.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Publication number: 20200348831
    Abstract: A vehicle gesture control system to improve safety and comfort during driving of a vehicle, the vehicle including an adaptive cruise control or autonomous drive arrangement configured to control velocity of the vehicle and distance between the vehicle and another vehicle, the system including a plurality of sensors configured to detect gestures performed by a driver on the surface of a steering wheel grip in the vehicle, the steering wheel grip including a circular tube surrounding a steering wheel, and a processor receiving outputs from the sensors and connected to a memory unit storing instructions for the processor to activate a plurality of features of the adaptive cruise control or autonomous drive arrangement, in response to a respective plurality of different gestures detected by the sensors, one of the gestures including movement of the driver's thumb around a lateral section of the steering wheel grip that faces the driver.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Inventors: Björn Alexander Jubner, Björn Thomas Eriksson, Gunnar Martin Fröjdh, Simon Greger Fellin, Stefan Johannes Holmgren
  • Patent number: 10719218
    Abstract: A vehicle user interface including a vehicle steering wheel including a grip, a sensor mounted in the steering wheel grip detecting objects touching the steering wheel grip, a plurality of individually activatable illumination units illuminating respective locations on the steering wheel grip, and a processor receiving outputs from the sensor, selectively activating a subset of the illumination units adjacent to a detected object, and controlling a plurality of vehicle functions in response to outputs of the sensor.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: July 21, 2020
    Assignee: Neonode Inc.
    Inventors: Björn Alexander Jubner, Björn Thomas Eriksson, Gunnar Martin Fröjdh, Simon Greger Fellin, Stefan Johannes Holmgren
  • Publication number: 20200150823
    Abstract: A sensor including multiple sensor modules and a processor, each sensor module including lenses, light detectors, each detector positioned along the image plane of a lens so as to receive maximum light intensity when light enters the lens at a particular angle, light emitters, each emitter being positioned in relation to a lens so as to project light into a detection zone, an activating unit synchronously co-activating each emitter with at least one of the detectors, and a calculating unit receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection zone to the detectors, and calculating a two-dimensional location of the object in the detection zone based on the detector outputs and the particular angle, wherein neighboring modules monitor different detection zones, and the processor receiving outputs from the sensor modules and mapping the object location in multiple detection zones over time.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 10534479
    Abstract: A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: January 14, 2020
    Assignee: Neonode Inc.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 10496180
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Grant
    Filed: February 18, 2018
    Date of Patent: December 3, 2019
    Assignee: Neonode, Inc.
    Inventors: Björn Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Simon Greger Fellin, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Tom Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Bertil Hagberg, Joel Verner Rozada
  • Publication number: 20180181209
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Application
    Filed: February 18, 2018
    Publication date: June 28, 2018
    Inventors: Björn Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Simon Greger Fellin, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Tom Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Bertil Hagberg, Joel Verner Rozada